TPTP Problem File: NUM016^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM016^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory
% Problem : TPS problem NUM016-1
% Version : Especial.
% English : There exist infinitely many primes.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0442 [Bro09]
% : NUM016-1 [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.17 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 22 ( 0 equ; 0 cnn)
% Maximal formula atoms : 22 ( 22 avg)
% Number of connectives : 76 ( 11 ~; 10 |; 11 &; 44 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 16 ( 0 ^; 16 !; 0 ?; 16 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(a,type,
a: $i ).
thf(factorial_plus_one,type,
factorial_plus_one: $i > $i ).
thf(less,type,
less: $i > $i > $o ).
thf(prime,type,
prime: $i > $o ).
thf(prime_divisor,type,
prime_divisor: $i > $i ).
thf(divides,type,
divides: $i > $i > $o ).
thf(cNUM016_1,conjecture,
~ ( ! [X: $i] :
~ ( less @ X @ X )
& ! [X: $i,Y: $i] :
( ~ ( less @ X @ Y )
| ~ ( less @ Y @ X ) )
& ! [X: $i] : ( divides @ X @ X )
& ! [X: $i,Y: $i,Z: $i] :
( ~ ( divides @ X @ Y )
| ~ ( divides @ Y @ Z )
| ( divides @ X @ Z ) )
& ! [X: $i,Y: $i] :
( ~ ( divides @ X @ Y )
| ~ ( less @ Y @ X ) )
& ! [X: $i] : ( less @ X @ ( factorial_plus_one @ X ) )
& ! [X: $i,Y: $i] :
( ~ ( divides @ X @ ( factorial_plus_one @ Y ) )
| ( less @ Y @ X ) )
& ! [X: $i] :
( ( prime @ X )
| ( divides @ ( prime_divisor @ X ) @ X ) )
& ! [X: $i] :
( ( prime @ X )
| ( prime @ ( prime_divisor @ X ) ) )
& ! [X: $i] :
( ( prime @ X )
| ( less @ ( prime_divisor @ X ) @ X ) )
& ( prime @ a )
& ! [X: $i] :
( ~ ( prime @ X )
| ~ ( less @ a @ X )
| ( less @ ( factorial_plus_one @ a ) @ X ) ) ) ).
%------------------------------------------------------------------------------