TPTP Problem File: NLP267^17.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NLP267^17 : TPTP v9.0.0. Released v8.1.0.
% Domain : Natural Language Processing
% Problem : Ticket example
% Version : [BP13] axioms.
% English :
% Refs : [FH+98] Farinas del Cerro et al. (1998), Belief Reconstruction
% : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% : [BP13] Benzmueller & Paulson (2013), Quantified Multimodal Lo
% : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% Source : [TPTP]
% Names : MML016+1 [QMLTP]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0
% Syntax : Number of formulae : 42 ( 10 unt; 22 typ; 8 def)
% Number of atoms : 72 ( 8 equ; 0 cnn)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 116 ( 1 ~; 1 |; 4 &; 105 @)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Number of types : 4 ( 2 usr)
% Number of type conns : 54 ( 54 >; 0 *; 0 +; 0 <<)
% Number of symbols : 21 ( 20 usr; 8 con; 0-3 aty)
% Number of variables : 31 ( 21 ^; 9 !; 1 ?; 31 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This output was generated by embedproblem, version 1.7.1 (library
% version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 'modal' embedding, version 1.5.2. Logic specification used:
% $modal == [$constants == $rigid,$quantification == $cumulative,
% $modalities == $modal_system_S5].
%------------------------------------------------------------------------------
thf(mworld,type,
mworld: $tType ).
thf(mindex,type,
mindex: $tType ).
thf(mrel_type,type,
mrel: mindex > mworld > mworld > $o ).
thf('#b_u_type',type,
'#b_u': mindex ).
thf('#b_s_type',type,
'#b_s': mindex ).
thf(mactual_type,type,
mactual: mworld ).
thf(mlocal_type,type,
mlocal: ( mworld > $o ) > $o ).
thf(mlocal_def,definition,
( mlocal
= ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
thf(mnot_type,type,
mnot: ( mworld > $o ) > mworld > $o ).
thf(mand_type,type,
mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mor_type,type,
mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mimplies_type,type,
mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mequiv_type,type,
mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mnot_def,definition,
( mnot
= ( ^ [A: mworld > $o,W: mworld] :
~ ( A @ W ) ) ) ).
thf(mand_def,definition,
( mand
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
& ( B @ W ) ) ) ) ).
thf(mor_def,definition,
( mor
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
| ( B @ W ) ) ) ) ).
thf(mimplies_def,definition,
( mimplies
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
=> ( B @ W ) ) ) ) ).
thf(mequiv_def,definition,
( mequiv
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
<=> ( B @ W ) ) ) ) ).
thf(mbox_type,type,
mbox: mindex > ( mworld > $o ) > mworld > $o ).
thf(mbox_def,definition,
( mbox
= ( ^ [R: mindex,Phi: mworld > $o,W: mworld] :
! [V: mworld] :
( ( mrel @ R @ W @ V )
=> ( Phi @ V ) ) ) ) ).
thf(mdia_type,type,
mdia: mindex > ( mworld > $o ) > mworld > $o ).
thf(mdia_def,definition,
( mdia
= ( ^ [R: mindex,Phi: mworld > $o,W: mworld] :
? [V: mworld] :
( ( mrel @ R @ W @ V )
& ( Phi @ V ) ) ) ) ).
thf('mrel_#b_u_reflexive',axiom,
! [W: mworld] : ( mrel @ '#b_u' @ W @ W ) ).
thf('mrel_#b_u_euclidean',axiom,
! [W: mworld,V: mworld,U: mworld] :
( ( ( mrel @ '#b_u' @ W @ U )
& ( mrel @ '#b_u' @ W @ V ) )
=> ( mrel @ '#b_u' @ U @ V ) ) ).
thf('mrel_#b_s_reflexive',axiom,
! [W: mworld] : ( mrel @ '#b_s' @ W @ W ) ).
thf('mrel_#b_s_euclidean',axiom,
! [W: mworld,V: mworld,U: mworld] :
( ( ( mrel @ '#b_s' @ W @ U )
& ( mrel @ '#b_s' @ W @ V ) )
=> ( mrel @ '#b_s' @ U @ V ) ) ).
thf(seventy_decl,type,
seventy: $i ).
thf(ninetyfive_decl,type,
ninetyfive: $i ).
thf(second_decl,type,
second: $i ).
thf(paris_decl,type,
paris: $i ).
thf(first_decl,type,
first: $i ).
thf(price_decl,type,
price: $i > mworld > $o ).
thf(dest_decl,type,
dest: $i > mworld > $o ).
thf(class_decl,type,
class: $i > mworld > $o ).
thf(axiom_1,axiom,
mlocal @ ( mbox @ '#b_s' @ ( mimplies @ ( mand @ ( dest @ paris ) @ ( class @ first ) ) @ ( price @ ninetyfive ) ) ) ).
thf(axiom_2,axiom,
mlocal @ ( mbox @ '#b_s' @ ( mimplies @ ( mand @ ( dest @ paris ) @ ( class @ second ) ) @ ( price @ seventy ) ) ) ).
thf(axiom_3_s,axiom,
mlocal @ ( mbox @ '#b_s' @ ( mnot @ ( mand @ ( class @ first ) @ ( class @ second ) ) ) ) ).
thf(axiom_3_u,axiom,
mlocal @ ( mbox @ '#b_u' @ ( mnot @ ( mand @ ( class @ first ) @ ( class @ second ) ) ) ) ).
thf(axiom_4_s,axiom,
mlocal @ ( mbox @ '#b_s' @ ( mnot @ ( mand @ ( price @ seventy ) @ ( price @ ninetyfive ) ) ) ) ).
thf(axiom_4_u,axiom,
mlocal @ ( mbox @ '#b_u' @ ( mnot @ ( mand @ ( price @ seventy ) @ ( price @ ninetyfive ) ) ) ) ).
thf(axiom_5,axiom,
mlocal @ ( mbox @ '#b_s' @ ( mand @ ( dest @ paris ) @ ( class @ second ) ) ) ).
thf(con,conjecture,
mlocal @ ( mbox @ '#b_s' @ ( price @ seventy ) ) ).
%------------------------------------------------------------------------------