TPTP Problem File: NLP049+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP049+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Mia ordered a shake, problem 7
% Version : [Bos00b] axioms.
% English : Eliminating inconsistent interpretations in the statement
% "Mia ordered a shake. It cost five dollars."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris026 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.00 v8.2.0, 0.33 v8.1.0, 0.25 v7.5.0, 0.20 v7.4.0, 0.00 v6.4.0, 0.33 v6.2.0, 0.27 v6.1.0, 0.36 v6.0.0, 0.31 v5.5.0, 0.38 v5.4.0, 0.29 v5.2.0, 0.33 v5.0.0, 0.14 v4.1.0, 0.20 v4.0.1, 0.00 v3.4.0, 0.33 v3.3.0, 0.17 v3.2.0, 0.25 v3.1.0, 0.50 v2.6.0, 0.25 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 57 ( 1 unt; 0 def)
% Number of atoms : 161 ( 17 equ)
% Maximal formula atoms : 24 ( 2 avg)
% Number of connectives : 127 ( 23 ~; 4 |; 42 &)
% ( 1 <=>; 57 =>; 0 <=; 0 <~>)
% Maximal formula depth : 31 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 50 ( 49 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 132 ( 117 !; 15 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U,V] :
( woman(U,V)
=> female(U,V) ) ).
fof(ax2,axiom,
! [U,V] :
( human_person(U,V)
=> animate(U,V) ) ).
fof(ax3,axiom,
! [U,V] :
( human_person(U,V)
=> human(U,V) ) ).
fof(ax4,axiom,
! [U,V] :
( organism(U,V)
=> living(U,V) ) ).
fof(ax5,axiom,
! [U,V] :
( organism(U,V)
=> impartial(U,V) ) ).
fof(ax6,axiom,
! [U,V] :
( organism(U,V)
=> entity(U,V) ) ).
fof(ax7,axiom,
! [U,V] :
( human_person(U,V)
=> organism(U,V) ) ).
fof(ax8,axiom,
! [U,V] :
( woman(U,V)
=> human_person(U,V) ) ).
fof(ax9,axiom,
! [U,V] :
( mia_forename(U,V)
=> forename(U,V) ) ).
fof(ax10,axiom,
! [U,V] :
( relation(U,V)
=> abstraction(U,V) ) ).
fof(ax11,axiom,
! [U,V] :
( relname(U,V)
=> relation(U,V) ) ).
fof(ax12,axiom,
! [U,V] :
( forename(U,V)
=> relname(U,V) ) ).
fof(ax13,axiom,
! [U,V] :
( object(U,V)
=> unisex(U,V) ) ).
fof(ax14,axiom,
! [U,V] :
( object(U,V)
=> impartial(U,V) ) ).
fof(ax15,axiom,
! [U,V] :
( object(U,V)
=> nonliving(U,V) ) ).
fof(ax16,axiom,
! [U,V] :
( entity(U,V)
=> existent(U,V) ) ).
fof(ax17,axiom,
! [U,V] :
( entity(U,V)
=> specific(U,V) ) ).
fof(ax18,axiom,
! [U,V] :
( entity(U,V)
=> thing(U,V) ) ).
fof(ax19,axiom,
! [U,V] :
( object(U,V)
=> entity(U,V) ) ).
fof(ax20,axiom,
! [U,V] :
( substance_matter(U,V)
=> object(U,V) ) ).
fof(ax21,axiom,
! [U,V] :
( food(U,V)
=> substance_matter(U,V) ) ).
fof(ax22,axiom,
! [U,V] :
( beverage(U,V)
=> food(U,V) ) ).
fof(ax23,axiom,
! [U,V] :
( shake_beverage(U,V)
=> beverage(U,V) ) ).
fof(ax24,axiom,
! [U,V] :
( order(U,V)
=> event(U,V) ) ).
fof(ax25,axiom,
! [U,V] :
( act(U,V)
=> event(U,V) ) ).
fof(ax26,axiom,
! [U,V] :
( order(U,V)
=> act(U,V) ) ).
fof(ax27,axiom,
! [U,V] :
( eventuality(U,V)
=> unisex(U,V) ) ).
fof(ax28,axiom,
! [U,V] :
( eventuality(U,V)
=> nonexistent(U,V) ) ).
fof(ax29,axiom,
! [U,V] :
( eventuality(U,V)
=> specific(U,V) ) ).
fof(ax30,axiom,
! [U,V] :
( eventuality(U,V)
=> thing(U,V) ) ).
fof(ax31,axiom,
! [U,V] :
( event(U,V)
=> eventuality(U,V) ) ).
fof(ax32,axiom,
! [U,V] :
( cost(U,V)
=> event(U,V) ) ).
fof(ax33,axiom,
! [U,V] :
( five(U,V)
=> group(U,V) ) ).
fof(ax34,axiom,
! [U,V] :
( set(U,V)
=> multiple(U,V) ) ).
fof(ax35,axiom,
! [U,V] :
( group(U,V)
=> set(U,V) ) ).
fof(ax36,axiom,
! [U,V] :
( abstraction(U,V)
=> unisex(U,V) ) ).
fof(ax37,axiom,
! [U,V] :
( abstraction(U,V)
=> general(U,V) ) ).
fof(ax38,axiom,
! [U,V] :
( abstraction(U,V)
=> nonhuman(U,V) ) ).
fof(ax39,axiom,
! [U,V] :
( thing(U,V)
=> singleton(U,V) ) ).
fof(ax40,axiom,
! [U,V] :
( abstraction(U,V)
=> thing(U,V) ) ).
fof(ax41,axiom,
! [U,V] :
( possession(U,V)
=> abstraction(U,V) ) ).
fof(ax42,axiom,
! [U,V] :
( currency(U,V)
=> possession(U,V) ) ).
fof(ax43,axiom,
! [U,V] :
( cash(U,V)
=> currency(U,V) ) ).
fof(ax44,axiom,
! [U,V] :
( dollar(U,V)
=> cash(U,V) ) ).
fof(ax45,axiom,
! [U,V] :
( animate(U,V)
=> ~ nonliving(U,V) ) ).
fof(ax46,axiom,
! [U,V] :
( existent(U,V)
=> ~ nonexistent(U,V) ) ).
fof(ax47,axiom,
! [U,V] :
( nonhuman(U,V)
=> ~ human(U,V) ) ).
fof(ax48,axiom,
! [U,V] :
( nonliving(U,V)
=> ~ living(U,V) ) ).
fof(ax49,axiom,
! [U,V] :
( present(U,V)
=> ~ past(U,V) ) ).
fof(ax50,axiom,
! [U,V] :
( singleton(U,V)
=> ~ multiple(U,V) ) ).
fof(ax51,axiom,
! [U,V] :
( specific(U,V)
=> ~ general(U,V) ) ).
fof(ax52,axiom,
! [U,V] :
( unisex(U,V)
=> ~ female(U,V) ) ).
fof(ax53,axiom,
! [U,V,W] :
( ( entity(U,V)
& forename(U,W)
& of(U,W,V) )
=> ~ ? [X] :
( forename(U,X)
& X != W
& of(U,X,V) ) ) ).
fof(ax54,axiom,
! [U,V,W,X] :
( ( nonreflexive(U,V)
& agent(U,V,W)
& patient(U,V,X) )
=> W != X ) ).
fof(ax55,axiom,
! [U,V] :
( five(U,V)
<=> ? [W] :
( member(U,W,V)
& ? [X] :
( member(U,X,V)
& X != W
& ? [Y] :
( member(U,Y,V)
& Y != X
& Y != W
& ? [Z] :
( member(U,Z,V)
& Z != Y
& Z != X
& Z != W
& ? [X1] :
( member(U,X1,V)
& X1 != Z
& X1 != Y
& X1 != X
& X1 != W
& ! [X2] :
( member(U,X2,V)
=> ( X2 = X1
| X2 = Z
| X2 = Y
| X2 = X
| X2 = W ) ) ) ) ) ) ) ) ).
fof(ax56,axiom,
! [U] :
~ ? [V] : member(U,V,V) ).
fof(co1,conjecture,
~ ? [U] :
( actual_world(U)
& ? [V,W,X,Y,Z,X1] :
( nonhuman(U,V)
& of(U,X,W)
& woman(U,W)
& mia_forename(U,X)
& forename(U,X)
& shake_beverage(U,Y)
& event(U,Z)
& agent(U,Z,W)
& patient(U,Z,Y)
& past(U,Z)
& nonreflexive(U,Z)
& order(U,Z)
& ! [X2] :
( member(U,X2,X1)
=> ? [X3] :
( event(U,X3)
& agent(U,X3,V)
& patient(U,X3,X2)
& present(U,X3)
& nonreflexive(U,X3)
& cost(U,X3) ) )
& five(U,X1)
& group(U,X1)
& ! [X4] :
( member(U,X4,X1)
=> dollar(U,X4) ) ) ) ).
%--------------------------------------------------------------------------