TPTP Problem File: NLP042+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP042+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Mia ordered a shake, problem 1
% Version : [Bos00b] axioms.
% English : Eliminating inconsistent interpretations in the statement
% "Mia ordered a shake."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris019 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.20 v4.0.1, 0.00 v3.1.0, 0.17 v2.6.0, 0.00 v2.4.0
% Syntax : Number of formulae : 45 ( 0 unt; 0 def)
% Number of atoms : 106 ( 2 equ)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 71 ( 10 ~; 0 |; 17 &)
% ( 0 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 39 ( 38 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 97 ( 91 !; 6 ?)
% SPC : FOF_CSA_EPR_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U,V] :
( woman(U,V)
=> female(U,V) ) ).
fof(ax2,axiom,
! [U,V] :
( human_person(U,V)
=> animate(U,V) ) ).
fof(ax3,axiom,
! [U,V] :
( human_person(U,V)
=> human(U,V) ) ).
fof(ax4,axiom,
! [U,V] :
( organism(U,V)
=> living(U,V) ) ).
fof(ax5,axiom,
! [U,V] :
( organism(U,V)
=> impartial(U,V) ) ).
fof(ax6,axiom,
! [U,V] :
( organism(U,V)
=> entity(U,V) ) ).
fof(ax7,axiom,
! [U,V] :
( human_person(U,V)
=> organism(U,V) ) ).
fof(ax8,axiom,
! [U,V] :
( woman(U,V)
=> human_person(U,V) ) ).
fof(ax9,axiom,
! [U,V] :
( mia_forename(U,V)
=> forename(U,V) ) ).
fof(ax10,axiom,
! [U,V] :
( abstraction(U,V)
=> unisex(U,V) ) ).
fof(ax11,axiom,
! [U,V] :
( abstraction(U,V)
=> general(U,V) ) ).
fof(ax12,axiom,
! [U,V] :
( abstraction(U,V)
=> nonhuman(U,V) ) ).
fof(ax13,axiom,
! [U,V] :
( abstraction(U,V)
=> thing(U,V) ) ).
fof(ax14,axiom,
! [U,V] :
( relation(U,V)
=> abstraction(U,V) ) ).
fof(ax15,axiom,
! [U,V] :
( relname(U,V)
=> relation(U,V) ) ).
fof(ax16,axiom,
! [U,V] :
( forename(U,V)
=> relname(U,V) ) ).
fof(ax17,axiom,
! [U,V] :
( object(U,V)
=> unisex(U,V) ) ).
fof(ax18,axiom,
! [U,V] :
( object(U,V)
=> impartial(U,V) ) ).
fof(ax19,axiom,
! [U,V] :
( object(U,V)
=> nonliving(U,V) ) ).
fof(ax20,axiom,
! [U,V] :
( entity(U,V)
=> existent(U,V) ) ).
fof(ax21,axiom,
! [U,V] :
( entity(U,V)
=> specific(U,V) ) ).
fof(ax22,axiom,
! [U,V] :
( entity(U,V)
=> thing(U,V) ) ).
fof(ax23,axiom,
! [U,V] :
( object(U,V)
=> entity(U,V) ) ).
fof(ax24,axiom,
! [U,V] :
( substance_matter(U,V)
=> object(U,V) ) ).
fof(ax25,axiom,
! [U,V] :
( food(U,V)
=> substance_matter(U,V) ) ).
fof(ax26,axiom,
! [U,V] :
( beverage(U,V)
=> food(U,V) ) ).
fof(ax27,axiom,
! [U,V] :
( shake_beverage(U,V)
=> beverage(U,V) ) ).
fof(ax28,axiom,
! [U,V] :
( order(U,V)
=> event(U,V) ) ).
fof(ax29,axiom,
! [U,V] :
( eventuality(U,V)
=> unisex(U,V) ) ).
fof(ax30,axiom,
! [U,V] :
( eventuality(U,V)
=> nonexistent(U,V) ) ).
fof(ax31,axiom,
! [U,V] :
( eventuality(U,V)
=> specific(U,V) ) ).
fof(ax32,axiom,
! [U,V] :
( thing(U,V)
=> singleton(U,V) ) ).
fof(ax33,axiom,
! [U,V] :
( eventuality(U,V)
=> thing(U,V) ) ).
fof(ax34,axiom,
! [U,V] :
( event(U,V)
=> eventuality(U,V) ) ).
fof(ax35,axiom,
! [U,V] :
( act(U,V)
=> event(U,V) ) ).
fof(ax36,axiom,
! [U,V] :
( order(U,V)
=> act(U,V) ) ).
fof(ax37,axiom,
! [U,V] :
( animate(U,V)
=> ~ nonliving(U,V) ) ).
fof(ax38,axiom,
! [U,V] :
( existent(U,V)
=> ~ nonexistent(U,V) ) ).
fof(ax39,axiom,
! [U,V] :
( nonhuman(U,V)
=> ~ human(U,V) ) ).
fof(ax40,axiom,
! [U,V] :
( nonliving(U,V)
=> ~ living(U,V) ) ).
fof(ax41,axiom,
! [U,V] :
( specific(U,V)
=> ~ general(U,V) ) ).
fof(ax42,axiom,
! [U,V] :
( unisex(U,V)
=> ~ female(U,V) ) ).
fof(ax43,axiom,
! [U,V,W] :
( ( entity(U,V)
& forename(U,W)
& of(U,W,V) )
=> ~ ? [X] :
( forename(U,X)
& X != W
& of(U,X,V) ) ) ).
fof(ax44,axiom,
! [U,V,W,X] :
( ( nonreflexive(U,V)
& agent(U,V,W)
& patient(U,V,X) )
=> W != X ) ).
fof(co1,conjecture,
~ ? [U] :
( actual_world(U)
& ? [V,W,X,Y] :
( of(U,W,V)
& woman(U,V)
& mia_forename(U,W)
& forename(U,W)
& shake_beverage(U,X)
& event(U,Y)
& agent(U,Y,V)
& patient(U,Y,X)
& past(U,Y)
& nonreflexive(U,Y)
& order(U,Y) ) ) ).
%--------------------------------------------------------------------------