TPTP Problem File: MSC028_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC028_1 : TPTP v9.0.0. Released v6.4.0.
% Domain : Miscellaneous
% Problem : 2 and 3 cents stamps
% Version : Especial.
% English : Suppose we have stamps of two different denominations, 3 cents and
% 5 cents. We want to show that it is possible to make up exactly
% any postage of 8 cents or more using stamps of these two
% denominations. The formula below asserts this, however "8"
% replaced by "some lower bound".
% Refs : [Liu85] Liu (1985), Elements of Discrete Mathematics
% : [Bau15] Baumgartner (2015), Email to Geoff Sutcliffe
% Source : [Bau15]
% Names : stamps.p [Bau15]
% Status : Theorem
% Rating : 0.62 v7.5.0, 0.70 v7.4.0, 0.62 v7.3.0, 0.50 v7.0.0, 0.57 v6.4.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 4 ( 1 equ)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 14 ( 3 atm; 3 fun; 4 num; 4 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 0 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 1 !; 3 ?; 4 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(formula,conjecture,
? [L: $int] :
! [K: $int] :
( $greater(K,L)
=> ? [S1: $int,S2: $int] :
( $greatereq(S1,0)
& $greatereq(S2,0)
& ( K = $sum($product(S1,3),$product(S2,5)) ) ) ) ).
%------------------------------------------------------------------------------