TPTP Problem File: MSC025^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC025^2 : TPTP v9.0.0. Released v5.5.0.
% Domain : Syntactic
% Problem : Nik's Challenge
% Version : Especial.
% : Theorem formulation : Bijection instantiated.
% English : Force the $i type to only have two elements, then conjecture the
% existence of a bijection between $o and $i.
% Refs : [Sul13] Sultana (2013), Email to Geoff Sutcliffe
% Source : [Sul13]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.57 v5.5.0
% Syntax : Number of formulae : 9 ( 1 unt; 4 typ; 0 def)
% Number of atoms : 10 ( 10 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 20 ( 5 ~; 2 |; 2 &; 6 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 0 ^; 5 !; 0 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(one,type,
one: $i ).
thf(two,type,
two: $i ).
thf(binarity_exhaust,axiom,
! [X: $i] :
( ( X = one )
| ( X = two ) ) ).
thf(binarity_distinc,axiom,
one != two ).
thf(b1_ty,type,
b1: $o > $i ).
thf(b1,axiom,
! [X: $o] :
( ( X
=> ( ( b1 @ X )
= one ) )
& ( ~ X
=> ( ( b1 @ X )
= two ) ) ) ).
thf(b2_ty,type,
b2: $o > $i ).
thf(b2,axiom,
! [X: $o] :
( ( X
=> ( ( b2 @ X )
= two ) )
& ( ~ X
=> ( ( b2 @ X )
= one ) ) ) ).
thf(goal,conjecture,
! [F: $o > $i] :
( ! [X: $o] :
( ( F @ X )
!= ( F @ ~ X ) )
=> ( ( F = b1 )
| ( F = b2 ) ) ) ).
%------------------------------------------------------------------------------