TPTP Problem File: MSC020^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC020^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Miscellaneous
% Problem : TPS problem THM301
% Version : Especial.
% English : Relation between HALF and DOUBLE functions.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0274 [Bro09]
% : THM301 [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.33 v8.2.0, 0.36 v8.1.0, 0.42 v7.5.0, 0.33 v7.4.0, 0.44 v7.3.0, 0.50 v7.1.0, 0.43 v7.0.0, 0.50 v6.4.0, 0.57 v6.3.0, 0.33 v6.0.0, 0.17 v5.5.0, 0.20 v5.4.0, 0.75 v5.3.0, 1.00 v5.2.0, 0.75 v5.0.0, 0.50 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 7 ( 0 equ; 0 cnn)
% Maximal formula atoms : 7 ( 7 avg)
% Number of connectives : 39 ( 0 ~; 0 |; 5 &; 29 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(cHALF,type,
cHALF: $i > $i > $o ).
thf(cDOUBLE,type,
cDOUBLE: $i > $i > $o ).
thf(cS,type,
cS: $i > $i ).
thf(c0,type,
c0: $i ).
thf(cTHM301,conjecture,
( ( ! [Q: $i > $i > $o,Xu: $i,Xv: $i] :
( ( ( cDOUBLE @ Xu @ Xv )
& ( Q @ c0 @ c0 )
& ! [Xx: $i,Xy: $i] :
( ( Q @ Xx @ Xy )
=> ( Q @ ( cS @ Xx ) @ ( cS @ ( cS @ Xy ) ) ) ) )
=> ( Q @ Xu @ Xv ) )
& ( cHALF @ c0 @ c0 )
& ( cHALF @ ( cS @ c0 ) @ c0 )
& ! [Xx: $i,Xy: $i] :
( ( cHALF @ Xx @ Xy )
=> ( cHALF @ ( cS @ ( cS @ Xx ) ) @ ( cS @ Xy ) ) ) )
=> ! [Xu: $i,Xv: $i] :
( ( cDOUBLE @ Xu @ Xv )
=> ( cHALF @ Xv @ Xu ) ) ) ).
%------------------------------------------------------------------------------