## TPTP Problem File: MSC016+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : MSC016+1 : TPTP v7.5.0. Released v3.5.0.
% Domain   : Miscellaneous
% Problem  : Problem from question answering system
% Version  : Especial.
% English  :

% Refs     :
% Source   : [TPTP]
% Names    :

% Status   : CounterSatisfiable
% Rating   : 0.00 v7.1.0, 0.33 v6.4.0, 0.25 v6.3.0, 0.33 v6.2.0, 0.56 v6.1.0, 0.60 v6.0.0, 0.57 v5.5.0, 0.43 v5.4.0, 0.67 v5.3.0, 0.62 v5.2.0, 0.75 v5.0.0, 0.44 v4.1.0, 0.67 v3.7.0, 0.50 v3.5.0
% Syntax   : Number of formulae    :  136 ( 132 unit)
%            Number of atoms       :  158 (   0 equality)
%            Maximal formula depth :   12 (   2 average)
%            Number of connectives :   22 (   0   ~;  13   |;   6   &)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of predicates  :    4 (   0 propositional; 1-3 arity)
%            Number of functors    :   17 (  14 constant; 0-2 arity)
%            Number of variables   :   70 (   0 sgn;  67   !;   3   ?)
%            Maximal term depth    :    2 (   1 average)
% SPC      : FOF_CSA_RFO_NEQ

% Comments : This came out of the MS work of Aparna Yerikalapudi.
%------------------------------------------------------------------------------
fof(abc,axiom,(
p(a,b,c) )).

fof(gwb,axiom,(
p(g(e,e),w,b) )).

fof(hgg,axiom,(
p(h(d),g(a,c),g(b,b)) )).

fof(hgk,axiom,(
p(h(d),g(e,e),k) )).

fof(klh,axiom,(
p(k,lkg,hill) )).

fof(aaa,axiom,(
p(a,a,a) )).

fof(lilly,axiom,(
flower(lilly) )).

fof(pig,axiom,(
animal(pig) )).

fof(horse,axiom,(
animal(horse) )).

fof(cow,axiom,(
animal(cow) )).

fof(pet,axiom,(
animal(pet(aparna)) )).

fof(ld__symmetry,axiom,(
! [X,Y] :
( ld__(X,Y)
=> ld__(Y,X) ) )).

fof(ld__aparna_a,axiom,(
ld__(aparna,a) )).

fof(ld__cow_a,axiom,(
ld__(cow,a) )).

fof(ld__horse_a,axiom,(
ld__(horse,a) )).

fof(ld__lilly_a,axiom,(
ld__(lilly,a) )).

fof(ld__a_pet,axiom,(
! [X1] : ld__(a,pet(X1)) )).

fof(ld__pig_a,axiom,(
ld__(pig,a) )).

fof(ld__aparna_b,axiom,(
ld__(aparna,b) )).

fof(ld__cow_b,axiom,(
ld__(cow,b) )).

fof(ld__horse_b,axiom,(
ld__(horse,b) )).

fof(ld__lilly_b,axiom,(
ld__(lilly,b) )).

fof(ld__b_pet,axiom,(
! [X1] : ld__(b,pet(X1)) )).

fof(ld__pig_b,axiom,(
ld__(pig,b) )).

fof(ld__aparna_c,axiom,(
ld__(aparna,c) )).

fof(ld__cow_c,axiom,(
ld__(cow,c) )).

fof(ld__horse_c,axiom,(
ld__(horse,c) )).

fof(ld__lilly_c,axiom,(
ld__(lilly,c) )).

fof(ld__c_pet,axiom,(
! [X1] : ld__(c,pet(X1)) )).

fof(ld__pig_c,axiom,(
ld__(pig,c) )).

fof(ld__aparna_d,axiom,(
ld__(aparna,d) )).

fof(ld__cow_d,axiom,(
ld__(cow,d) )).

fof(ld__horse_d,axiom,(
ld__(horse,d) )).

fof(ld__lilly_d,axiom,(
ld__(lilly,d) )).

fof(ld__d_pet,axiom,(
! [X1] : ld__(d,pet(X1)) )).

fof(ld__pig_d,axiom,(
ld__(pig,d) )).

fof(ld__aparna_e,axiom,(
ld__(aparna,e) )).

fof(ld__cow_e,axiom,(
ld__(cow,e) )).

fof(ld__horse_e,axiom,(
ld__(horse,e) )).

fof(ld__lilly_e,axiom,(
ld__(lilly,e) )).

fof(ld__e_pet,axiom,(
! [X1] : ld__(e,pet(X1)) )).

fof(ld__pig_e,axiom,(
ld__(pig,e) )).

fof(ld__aparna_g,axiom,(
! [X1,X2] : ld__(aparna,g(X1,X2)) )).

fof(ld__cow_g,axiom,(
! [X1,X2] : ld__(cow,g(X1,X2)) )).

fof(ld__horse_g,axiom,(
! [X1,X2] : ld__(horse,g(X1,X2)) )).

fof(ld__lilly_g,axiom,(
! [X1,X2] : ld__(lilly,g(X1,X2)) )).

fof(ld__g_pet,axiom,(
! [X1,X2,Y1] : ld__(pet(Y1),g(X1,X2)) )).

fof(ld__pig_g,axiom,(
! [X1,X2] : ld__(pig,g(X1,X2)) )).

fof(ld__aparna_h,axiom,(
! [X1] : ld__(aparna,h(X1)) )).

fof(ld__cow_h,axiom,(
! [X1] : ld__(cow,h(X1)) )).

fof(ld__horse_h,axiom,(
! [X1] : ld__(horse,h(X1)) )).

fof(ld__lilly_h,axiom,(
! [X1] : ld__(lilly,h(X1)) )).

fof(ld__h_pet,axiom,(
! [X1,Y1] : ld__(pet(Y1),h(X1)) )).

fof(ld__pig_h,axiom,(
! [X1] : ld__(pig,h(X1)) )).

fof(ld__aparna_hill,axiom,(
ld__(aparna,hill) )).

fof(ld__cow_hill,axiom,(
ld__(cow,hill) )).

fof(ld__horse_hill,axiom,(
ld__(horse,hill) )).

fof(ld__lilly_hill,axiom,(
ld__(lilly,hill) )).

fof(ld__hill_pet,axiom,(
! [X1] : ld__(hill,pet(X1)) )).

fof(ld__pig_hill,axiom,(
ld__(pig,hill) )).

fof(ld__aparna_k,axiom,(
ld__(aparna,k) )).

fof(ld__cow_k,axiom,(
ld__(cow,k) )).

fof(ld__horse_k,axiom,(
ld__(horse,k) )).

fof(ld__lilly_k,axiom,(
ld__(lilly,k) )).

fof(ld__k_pet,axiom,(
! [X1] : ld__(k,pet(X1)) )).

fof(ld__pig_k,axiom,(
ld__(pig,k) )).

fof(ld__aparna_lkg,axiom,(
ld__(aparna,lkg) )).

fof(ld__cow_lkg,axiom,(
ld__(cow,lkg) )).

fof(ld__horse_lkg,axiom,(
ld__(horse,lkg) )).

fof(ld__lilly_lkg,axiom,(
ld__(lilly,lkg) )).

fof(ld__lkg_pet,axiom,(
! [X1] : ld__(lkg,pet(X1)) )).

fof(ld__pig_lkg,axiom,(
ld__(pig,lkg) )).

fof(ld__aparna_w,axiom,(
ld__(aparna,w) )).

fof(ld__cow_w,axiom,(
ld__(cow,w) )).

fof(ld__horse_w,axiom,(
ld__(horse,w) )).

fof(ld__lilly_w,axiom,(
ld__(lilly,w) )).

fof(ld__w_pet,axiom,(
! [X1] : ld__(w,pet(X1)) )).

fof(ld__pig_w,axiom,(
ld__(pig,w) )).

fof(ld__g,axiom,(
! [X1,X2,X3,X4] :
( ( ld__(X1,X2)
| ld__(X3,X4) )
=> ld__(g(X1,X3),g(X2,X4)) ) )).

fof(ld__h,axiom,(
! [X1,X2] :
( ld__(X1,X2)
=> ld__(h(X1),h(X2)) ) )).

fof(ld__w_a,axiom,(
ld__(w,a) )).

fof(ld__d_a,axiom,(
ld__(d,a) )).

fof(ld__lkg_a,axiom,(
ld__(lkg,a) )).

fof(ld__a_c,axiom,(
ld__(a,c) )).

fof(ld__a_h,axiom,(
! [X1] : ld__(a,h(X1)) )).

fof(ld__k_a,axiom,(
ld__(k,a) )).

fof(ld__hill_a,axiom,(
ld__(hill,a) )).

fof(ld__e_a,axiom,(
ld__(e,a) )).

fof(ld__a_g,axiom,(
! [X1,X2] : ld__(a,g(X1,X2)) )).

fof(ld__a_b,axiom,(
ld__(a,b) )).

fof(ld__b_g,axiom,(
! [X1,X2] : ld__(b,g(X1,X2)) )).

fof(ld__k_b,axiom,(
ld__(k,b) )).

fof(ld__w_b,axiom,(
ld__(w,b) )).

fof(ld__d_b,axiom,(
ld__(d,b) )).

fof(ld__hill_b,axiom,(
ld__(hill,b) )).

fof(ld__b_h,axiom,(
! [X1] : ld__(b,h(X1)) )).

fof(ld__e_b,axiom,(
ld__(e,b) )).

fof(ld__b_c,axiom,(
ld__(b,c) )).

fof(ld__lkg_b,axiom,(
ld__(lkg,b) )).

fof(ld__w_c,axiom,(
ld__(w,c) )).

fof(ld__c_g,axiom,(
! [X1,X2] : ld__(c,g(X1,X2)) )).

fof(ld__lkg_c,axiom,(
ld__(lkg,c) )).

fof(ld__e_c,axiom,(
ld__(e,c) )).

fof(ld__d_c,axiom,(
ld__(d,c) )).

fof(ld__k_c,axiom,(
ld__(k,c) )).

fof(ld__c_h,axiom,(
! [X1] : ld__(c,h(X1)) )).

fof(ld__hill_c,axiom,(
ld__(hill,c) )).

fof(ld__lkg_d,axiom,(
ld__(lkg,d) )).

fof(ld__d_g,axiom,(
! [X1,X2] : ld__(d,g(X1,X2)) )).

fof(ld__k_d,axiom,(
ld__(k,d) )).

fof(ld__hill_d,axiom,(
ld__(hill,d) )).

fof(ld__d_w,axiom,(
ld__(d,w) )).

fof(ld__d_h,axiom,(
! [X1] : ld__(d,h(X1)) )).

fof(ld__d_e,axiom,(
ld__(d,e) )).

fof(ld__e_h,axiom,(
! [X1] : ld__(e,h(X1)) )).

fof(ld__e_w,axiom,(
ld__(e,w) )).

fof(ld__e_g,axiom,(
! [X1,X2] : ld__(e,g(X1,X2)) )).

fof(ld__lkg_e,axiom,(
ld__(lkg,e) )).

fof(ld__hill_e,axiom,(
ld__(hill,e) )).

fof(ld__k_e,axiom,(
ld__(k,e) )).

fof(ld__g_h,axiom,(
! [X1,X2,Y1] : ld__(h(Y1),g(X1,X2)) )).

fof(ld__w_g,axiom,(
! [X1,X2] : ld__(w,g(X1,X2)) )).

fof(ld__k_g,axiom,(
! [X1,X2] : ld__(k,g(X1,X2)) )).

fof(ld__lkg_g,axiom,(
! [X1,X2] : ld__(lkg,g(X1,X2)) )).

fof(ld__hill_g,axiom,(
! [X1,X2] : ld__(hill,g(X1,X2)) )).

fof(ld__lkg_h,axiom,(
! [X1] : ld__(lkg,h(X1)) )).

fof(ld__hill_h,axiom,(
! [X1] : ld__(hill,h(X1)) )).

fof(ld__w_h,axiom,(
! [X1] : ld__(w,h(X1)) )).

fof(ld__k_h,axiom,(
! [X1] : ld__(k,h(X1)) )).

fof(ld__lkg_hill,axiom,(
ld__(lkg,hill) )).

fof(ld__hill_k,axiom,(
ld__(hill,k) )).

fof(ld__hill_w,axiom,(
ld__(hill,w) )).

fof(ld__k_w,axiom,(
ld__(k,w) )).

fof(ld__lkg_k,axiom,(
ld__(lkg,k) )).

fof(ld__lkg_w,axiom,(
ld__(lkg,w) )).

? [X,Y,Z] :
( p(X,Y,Z)
& ( ld__(X,k)
| ld__(Y,lkg)
| ld__(Z,hill) )
& ( ld__(X,h(d))
| ld__(Y,g(e,e))
| ld__(Z,k) )
& ( ld__(X,a)
| ld__(Y,b)
| ld__(Z,c) )
& ( ld__(X,g(e,e))
| ld__(Y,w)
| ld__(Z,b) )
& ( ld__(X,h(d))
| ld__(Y,g(a,c))
| ld__(Z,g(b,b)) )
& ( ld__(X,a)
| ld__(Y,a)
| ld__(Z,a) ) ) )).

%------------------------------------------------------------------------------
```