TPTP Problem File: MSC013-10.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : MSC013-10 : TPTP v7.5.0. Released v7.3.0.
% Domain   : Puzzles
% Problem  : Single-valued relation between 5-tuple and domain element
% Version  : Especial.
% English  :

% Refs     : [CS18]  Claessen & Smallbone (2018), Efficient Encodings of Fi
%          : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source   : [Sma18]
% Names    :

% Status   : Satisfiable
% Rating   : 0.50 v7.5.0, 0.75 v7.3.0
% Syntax   : Number of clauses     :   12 (   0 non-Horn;  12 unit;   5 RR)
%            Number of atoms       :   12 (  12 equality)
%            Maximal clause size   :    1 (   1 average)
%            Number of predicates  :    1 (   0 propositional; 2-2 arity)
%            Number of functors    :    8 (   4 constant; 0-6 arity)
%            Number of variables   :   63 (  41 singleton)
%            Maximal term depth    :    8 (   2 average)
% SPC      : CNF_SAT_RFO_PEQ_UEQ

% Comments : Converted from MSC013+1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
    ( ifeq(A,A,B,C) = B )).

cnf(n0_and_n1_reflexive_1,axiom,
    ( equalish(n0,n0) = true )).

cnf(n0_and_n1_reflexive,axiom,
    ( equalish(n1,n1) = true )).

cnf(n0_equal_n1,axiom,
    ( ifeq(equalish(n0,n1),true,goal,true) = true )).

cnf(n1_equal_n0,axiom,
    ( ifeq(equalish(n1,n0),true,goal,true) = true )).

cnf(relation_exists,axiom,
    ( ifeq(equalish(E,E),true,ifeq(equalish(D,D),true,ifeq(equalish(C,C),true,ifeq(equalish(B,B),true,ifeq(equalish(A,A),true,f(A,B,C,D,E,sK1_relation_exists_F(A,B,C,D,E)),true),true),true),true),true) = true )).

cnf(relation_injective_4,axiom,
    ( ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(E,J),true),true) = true )).

cnf(relation_injective_3,axiom,
    ( ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(D,I),true),true) = true )).

cnf(relation_injective_2,axiom,
    ( ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(C,H),true),true) = true )).

cnf(relation_injective_1,axiom,
    ( ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(B,G),true),true) = true )).

cnf(relation_injective,axiom,
    ( ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(A,F),true),true) = true )).

cnf(goal_to_be_proved,negated_conjecture,
    ( goal != true )).

%------------------------------------------------------------------------------