TPTP Problem File: MSC013+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC013+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Miscellaneous
% Problem : Single-valued relation between 5-tuple and domain element
% Version : Especial.
% English : The existence of a single-valued relation between a 5-tuple of
% Booleans and a domain element
% Refs : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source : [Bez05]
% Names : inj5 [Bez05]
% Status : CounterSatisfiable
% Rating : 0.20 v9.0.0, 0.00 v8.2.0, 0.67 v8.1.0, 0.33 v7.5.0, 0.00 v7.3.0, 0.33 v7.1.0, 0.00 v6.4.0, 0.50 v6.3.0, 0.33 v6.2.0, 0.56 v6.1.0, 0.70 v6.0.0, 0.71 v5.5.0, 0.43 v5.4.0, 0.33 v5.3.0, 0.31 v5.2.0, 0.50 v5.0.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.00 v3.7.0, 0.33 v3.5.0, 0.25 v3.4.0, 0.33 v3.2.0
% Syntax : Number of formulae : 6 ( 1 unt; 0 def)
% Number of atoms : 20 ( 0 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 14 ( 0 ~; 0 |; 10 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 1 prp; 0-6 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 17 ( 16 !; 1 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(n0_and_n1_reflexive,axiom,
( equalish(n0,n0)
& equalish(n1,n1) ) ).
fof(n0_equal_n1,axiom,
( equalish(n0,n1)
=> goal ) ).
fof(n1_equal_n0,axiom,
( equalish(n1,n0)
=> goal ) ).
fof(relation_exists,axiom,
! [A,B,C,D,E] :
( ( equalish(A,A)
& equalish(B,B)
& equalish(C,C)
& equalish(D,D)
& equalish(E,E) )
=> ? [F] : f(A,B,C,D,E,F) ) ).
fof(relation_injective,axiom,
! [A,B,C,D,E,F,G,H,I,J,K] :
( ( f(A,B,C,D,E,K)
& f(F,G,H,I,J,K) )
=> ( equalish(A,F)
& equalish(B,G)
& equalish(C,H)
& equalish(D,I)
& equalish(E,J) ) ) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------