TPTP Problem File: MSC007^1.003.004.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC007^1.003.004 : TPTP v9.0.0. Released v5.4.0.
% Domain : Miscellaneous
% Problem : Cook pigeon-hole problem, 4 pigeons and 3 holes
% Version : Especial.
% English : Suppose there are N holes and more pigeons to put in the
% holes. Every pigeon is in a hole and no hole contains more
% than one pigeon. Prove that some pigoen has no hole.
% Refs : [Bro12] Brown (2012), Email to G. Sutcliffe
% Source : [Bro12]
% Names :
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.69 v8.1.0, 0.64 v7.5.0, 0.57 v7.4.0, 0.89 v7.2.0, 0.88 v7.1.0, 1.00 v6.3.0, 0.80 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0
% Syntax : Number of formulae : 18 ( 6 unt; 10 typ; 0 def)
% Number of atoms : 8 ( 8 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 17 ( 7 ~; 0 |; 3 &; 6 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 7 con; 0-2 aty)
% Number of variables : 4 ( 0 ^; 2 !; 2 ?; 4 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(hole,type,
hole: $tType ).
thf(pigeon,type,
pigeon: $tType ).
thf(hole1,type,
hole1: hole ).
thf(hole2,type,
hole2: hole ).
thf(hole3,type,
hole3: hole ).
thf(pigeon1,type,
pigeon1: pigeon ).
thf(pigeon2,type,
pigeon2: pigeon ).
thf(pigeon3,type,
pigeon3: pigeon ).
thf(pigeon4,type,
pigeon4: pigeon ).
thf(pigeon_hole_t,type,
pigeon_hole: pigeon > hole ).
thf(holecover,axiom,
! [P: hole > $o] :
( ( ( P @ hole1 )
& ( P @ hole2 )
& ( P @ hole3 ) )
=> ! [X: hole] : ( P @ X ) ) ).
thf(pigeon1pigeon2,axiom,
pigeon1 != pigeon2 ).
thf(pigeon1pigeon3,axiom,
pigeon1 != pigeon3 ).
thf(pigeon2pigeon3,axiom,
pigeon2 != pigeon3 ).
thf(pigeon1pigeon4,axiom,
pigeon1 != pigeon4 ).
thf(pigeon2pigeon4,axiom,
pigeon2 != pigeon4 ).
thf(pigeon3pigeon4,axiom,
pigeon3 != pigeon4 ).
% thf(one_in_a_hole,axiom,(
% ! [X: pigeon,Y: pigeon] :
% ( ( ( pigeon_hole @ X )
% = ( pigeon_hole @ Y ) )
% => ( X = Y ) ) )).
thf(sharing_a_hole,conjecture,
? [X: pigeon,Y: pigeon] :
( ( ( pigeon_hole @ X )
= ( pigeon_hole @ Y ) )
& ( X != Y ) ) ).
%------------------------------------------------------------------------------