TPTP Problem File: MGT065+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT065+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Long-run hazard of mortality
% Version : [Han98] axioms.
% English : The long-run hazard of mortality for an endowed organization with
% either a fragile or a robust position in a drifting environment
% exceeds the hazard near founding.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : THEOREM 11 [Han98]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.31 v8.2.0, 0.28 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.23 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.26 v7.0.0, 0.17 v6.4.0, 0.23 v6.3.0, 0.25 v6.2.0, 0.28 v6.1.0, 0.33 v6.0.0, 0.26 v5.5.0, 0.33 v5.4.0, 0.39 v5.3.0, 0.41 v5.2.0, 0.30 v5.1.0, 0.29 v4.1.0, 0.35 v4.0.0, 0.33 v3.7.0, 0.25 v3.5.0, 0.21 v3.4.0, 0.26 v3.3.0, 0.29 v3.2.0, 0.36 v3.1.0, 0.44 v2.7.0, 0.33 v2.6.0, 0.50 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 17 ( 5 unt; 0 def)
% Number of atoms : 70 ( 12 equ)
% Maximal formula atoms : 16 ( 4 avg)
% Number of connectives : 61 ( 8 ~; 5 |; 28 &)
% ( 7 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 1-3 aty)
% Number of functors : 11 ( 11 usr; 9 con; 0-2 aty)
% Number of variables : 29 ( 29 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An endowment provides an immunity that lasts until an
%----organization's age exceeds `eta'.
fof(definition_1,axiom,
! [X] :
( has_endowment(X)
<=> ! [T] :
( organization(X)
& ( smaller_or_equal(age(X,T),eta)
=> has_immunity(X,T) )
& ( greater(age(X,T),eta)
=> ~ has_immunity(X,T) ) ) ) ).
%----Two states of the environment are dissimilar for an organization
%----if and only if the organization cannot be aligned to both.
%----
%----Added quantification over X.
fof(definition_2,axiom,
! [X,T0,T] :
( dissimilar(X,T0,T)
<=> ( organization(X)
& ~ ( is_aligned(X,T0)
<=> is_aligned(X,T) ) ) ) ).
%----An organization is aligned with the state of the environment at
%----its time of founding.
fof(assumption_13,axiom,
! [X,T] :
( ( organization(X)
& age(X,T) = zero )
=> is_aligned(X,T) ) ).
%----Environmental drift: the environments at times separated by more
%----than `sigma' are dissimilar.
fof(assumption_15,axiom,
! [X,T0,T] :
( ( organization(X)
& age(X,T0) = zero )
=> ( greater(age(X,T),sigma)
<=> dissimilar(X,T0,T) ) ) ).
%----An organization's immunity. alignment of capability with the
%----current state of the environment and positional advantage jointly
%----affect the hazard of mortality with the following ordinal scaling:
fof(assumption_17,axiom,
! [X,T] :
( organization(X)
=> ( ( has_immunity(X,T)
=> hazard_of_mortality(X,T) = very_low )
& ( ~ has_immunity(X,T)
=> ( ( ( is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = low )
& ( ( ~ is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod1 )
& ( ( is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod2 )
& ( ( ~ is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = high ) ) ) ) ) ).
%----The levels of hazard of mortality are ordered:
%----
%----Split over 5 separate formulas because TPTP gives an error on top
%----level occurrences of `&'.
fof(assumption_18a,axiom,
greater(high,mod1) ).
fof(assumption_18b,axiom,
greater(mod1,low) ).
fof(assumption_18c,axiom,
greater(low,very_low) ).
fof(assumption_18d,axiom,
greater(high,mod2) ).
fof(assumption_18e,axiom,
greater(mod2,low) ).
%----Problem theorems
%----The long-run hazard of mortality for an endowed organization with
%----either a fragile or a robust position in a drifting environment
%----exceeds the hazard near founding.
%----From D1, D2, A13, A15, A17, A18 (text says D1,2,4 and A1,2,13-15,17-19;
%----also needs D<, D<=, MP>str, MP>com, MP>tra).
%----
%----Expanding (age(X,T1) <= min(eta,sigma,tau)) and
%----expanding (age(X,T1) > max(eta,sigma,tau));
%----Text says RB(x) & FG(x) which contradicts lemma 10; changed to |.
%----added (hazard_of_mortality(X,T1) = hazard_of_mortality(X,T0)).
fof(theorem_11,conjecture,
! [X,T0,T1,T2] :
( ( organization(X)
& ( robust_position(X)
| fragile_position(X) )
& has_endowment(X)
& age(X,T0) = zero
& greater(sigma,zero)
& greater(tau,zero)
& greater(eta,zero)
& smaller_or_equal(age(X,T1),sigma)
& smaller_or_equal(age(X,T1),tau)
& smaller_or_equal(age(X,T1),eta)
& greater(age(X,T2),sigma)
& greater(age(X,T2),tau)
& greater(age(X,T2),eta) )
=> ( greater(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1))
& hazard_of_mortality(X,T1) = hazard_of_mortality(X,T0) ) ) ).
%--------------------------------------------------------------------------