TPTP Problem File: MGT062+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT062+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Condictions for decreasing hazard of mortality
% Version : [Han98] axioms.
% English : If environmental drift destroys alignment exactly when advantage
% can be gained from occupancy of a robust position, then the
% hazard of mortality for an unendowed organization with a robust
% position decreases with age.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : THEOREM 8 [Han98]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.31 v8.2.0, 0.25 v8.1.0, 0.22 v7.5.0, 0.25 v7.4.0, 0.20 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.19 v6.3.0, 0.21 v6.2.0, 0.20 v6.1.0, 0.33 v6.0.0, 0.35 v5.5.0, 0.44 v5.4.0, 0.43 v5.3.0, 0.44 v5.2.0, 0.35 v5.1.0, 0.38 v4.1.0, 0.35 v4.0.0, 0.33 v3.7.0, 0.35 v3.5.0, 0.32 v3.4.0, 0.21 v3.2.0, 0.36 v3.1.0, 0.56 v2.7.0, 0.33 v2.4.0
% Syntax : Number of formulae : 14 ( 1 unt; 0 def)
% Number of atoms : 63 ( 13 equ)
% Maximal formula atoms : 16 ( 4 avg)
% Number of connectives : 60 ( 11 ~; 4 |; 24 &)
% ( 7 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 1-3 aty)
% Number of functors : 10 ( 10 usr; 8 con; 0-2 aty)
% Number of variables : 31 ( 31 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An unendowed organization never possesses immunity.
fof(assumption_1,axiom,
! [X,T] :
( ( organization(X)
& ~ has_endowment(X) )
=> ~ has_immunity(X,T) ) ).
%----Two states of the environment are dissimilar for an organization
%----if and only if the organization cannot be aligned to both.
%----
%----Added quantification over X.
fof(definition_2,axiom,
! [X,T0,T] :
( dissimilar(X,T0,T)
<=> ( organization(X)
& ~ ( is_aligned(X,T0)
<=> is_aligned(X,T) ) ) ) ).
%----An organization is aligned with the state of the environment at
%----its time of founding.
fof(assumption_13,axiom,
! [X,T] :
( ( organization(X)
& age(X,T) = zero )
=> is_aligned(X,T) ) ).
%----Environmental drift: the environments at times separated by more
%----than `sigma' are dissimilar.
fof(assumption_15,axiom,
! [X,T0,T] :
( ( organization(X)
& age(X,T0) = zero )
=> ( greater(age(X,T),sigma)
<=> dissimilar(X,T0,T) ) ) ).
%----An organization's position is robust if and only if it provides
%----positional advantage only after age `tau'.
%----
%----Text says fragile_position(X) instead of robust_position(X).
%----Interchanged ~ positional_advantage(X,T) and positional_advantage(X,T).
fof(definition_4,axiom,
! [X] :
( robust_position(X)
<=> ! [T] :
( ( smaller_or_equal(age(X,T),tau)
=> ~ positional_advantage(X,T) )
& ( greater(age(X,T),tau)
=> positional_advantage(X,T) ) ) ) ).
%----An organization's immunity. alignment of capability with the
%----current state of the environment and positional advantage jointly
%----affect the hazard of mortality with the following ordinal scaling:
fof(assumption_17,axiom,
! [X,T] :
( organization(X)
=> ( ( has_immunity(X,T)
=> hazard_of_mortality(X,T) = very_low )
& ( ~ has_immunity(X,T)
=> ( ( ( is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = low )
& ( ( ~ is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod1 )
& ( ( is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod2 )
& ( ( ~ is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = high ) ) ) ) ) ).
%----Position dominates alignment:
fof(assumption_19,axiom,
greater(mod2,mod1) ).
%----Problem theorems
%----Robust position without endowment when (`sigma' = `tau'): If
%----environmental drift destroys alignment exactly when advantage can
%----be gained from occupancy of a robust position (`sigma' = `tau'), then
%----the hazard of mortality for an unendowed organization with a
%----robust position decreases with age.
%----From D2, D4 and A1, A13, A15, A17 (text says D1,2 and A1,2,13-15,17-19;
%----also needs D<, D<=).
%----
%----Added (`sigma' = `tau') in antecedent
%----and (hazard_of_mortality(X,T1) = hazard_of_mortality(X,T0)).
fof(theorem_8,conjecture,
! [X,T0,T1,T2] :
( ( organization(X)
& robust_position(X)
& ~ has_endowment(X)
& age(X,T0) = zero
& greater(sigma,zero)
& greater(tau,zero)
& sigma = tau
& smaller_or_equal(age(X,T1),sigma)
& greater(age(X,T2),sigma) )
=> ( smaller(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1))
& hazard_of_mortality(X,T1) = hazard_of_mortality(X,T0) ) ) ).
%--------------------------------------------------------------------------