TPTP Problem File: MGT054+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT054+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Hazard of mortality increases in a drifting environment
% Version : [Han98] axioms.
% English : An unendowed organization's hazard of mortality increases with
% age in a drifting environment.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : THEOREM 5 [Han98]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.22 v8.2.0, 0.19 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.17 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.23 v6.3.0, 0.25 v6.2.0, 0.20 v6.1.0, 0.23 v6.0.0, 0.30 v5.5.0, 0.26 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.21 v4.1.0, 0.22 v4.0.1, 0.26 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.16 v3.3.0, 0.14 v3.2.0, 0.27 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.33 v2.5.0, 0.17 v2.4.0
% Syntax : Number of formulae : 14 ( 0 unt; 0 def)
% Number of atoms : 50 ( 6 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 45 ( 9 ~; 4 |; 18 &)
% ( 6 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 36 ( 36 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An unendowed organization never possesses immunity.
fof(assumption_1,axiom,
! [X,T] :
( ( organization(X)
& ~ has_endowment(X) )
=> ~ has_immunity(X,T) ) ).
%----An organization's hazard of mortality is lower during periods in
%----which it has immunity than in periods in which it does not.
fof(assumption_3,axiom,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& ~ has_immunity(X,T) )
=> greater(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)) ) ).
%----Two states of the environment are dissimilar for an organization
%----if and only if the organization cannot be aligned to both.
%----
%----Added quantification over X.
fof(definition_2,axiom,
! [X,T0,T] :
( dissimilar(X,T0,T)
<=> ( organization(X)
& ~ ( is_aligned(X,T0)
<=> is_aligned(X,T) ) ) ) ).
%----An organization is aligned with the state of the environment at
%----its time of founding.
fof(assumption_13,axiom,
! [X,T] :
( ( organization(X)
& age(X,T) = zero )
=> is_aligned(X,T) ) ).
%----An organization's capability is higher in the state of the
%----environment to which it is aligned.
%----
%----Changed dissimilar(X,T0,T) to ~ is_aligned(X,T).
%----This makes theorem 5,9,10,11 and lemma 8 derivable.
fof(assumption_14,axiom,
! [X,T0,T] :
( ( organization(X)
& is_aligned(X,T0)
& ~ is_aligned(X,T) )
=> greater(capability(X,T0),capability(X,T)) ) ).
%----Environmental drift: the environments at times separated by more
%----than `sigma' are dissimilar.
fof(assumption_15,axiom,
! [X,T0,T] :
( ( organization(X)
& age(X,T0) = zero )
=> ( greater(age(X,T),sigma)
<=> dissimilar(X,T0,T) ) ) ).
%----Superiority in capability lowers the hazard of mortality when an
%----organization lacks immunity.
fof(assumption_16,axiom,
! [X,T0,T] :
( ( organization(X)
& ~ has_immunity(X,T0)
& ~ has_immunity(X,T)
& greater(capability(X,T),capability(X,T0)) )
=> greater(hazard_of_mortality(X,T0),hazard_of_mortality(X,T)) ) ).
%----Problem theorems
%----The obsolescence theorem for unendowed organizations (Barron et
%----al. 1994): an unendowed organization's hazard of mortality
%----increases with age in a drifting environment.
%----From D2, A1, A3, A13-16 (text says D1-2, A1-3, 13-16; also needs D<,
%----D<=, MP>str).
fof(theorem_5,conjecture,
! [X,T0,T1,T2] :
( ( organization(X)
& ~ has_endowment(X)
& age(X,T0) = zero
& smaller_or_equal(age(X,T1),sigma)
& greater(age(X,T2),sigma)
& greater(sigma,zero) )
=> greater(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1)) ) ).
%--------------------------------------------------------------------------