TPTP Problem File: MGT035+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT035+2 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : EPs outcompete FMs in stable environments
% Version : [PM93] axioms.
% English : Efficient producers outcompete first movers past a certain
% time in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source : [PM93]
% Names : THEOREM 4 [PM93]
% : T4 [PB+94]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.58 v8.2.0, 0.56 v8.1.0, 0.58 v7.5.0, 0.62 v7.4.0, 0.43 v7.3.0, 0.52 v7.2.0, 0.48 v7.1.0, 0.52 v7.0.0, 0.43 v6.4.0, 0.46 v6.3.0, 0.54 v6.2.0, 0.52 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.62 v4.1.0, 0.70 v4.0.1, 0.74 v4.0.0, 0.71 v3.7.0, 0.75 v3.5.0, 0.79 v3.4.0, 0.74 v3.3.0, 0.79 v3.2.0, 0.91 v3.1.0, 0.89 v2.7.0, 0.83 v2.6.0, 0.86 v2.5.0, 1.00 v2.4.0, 0.75 v2.3.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 20 ( 0 unt; 0 def)
% Number of atoms : 95 ( 10 equ)
% Maximal formula atoms : 10 ( 4 avg)
% Number of connectives : 80 ( 5 ~; 7 |; 39 &)
% ( 2 <=>; 27 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 1-4 aty)
% Number of functors : 9 ( 9 usr; 3 con; 0-2 aty)
% Number of variables : 50 ( 47 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. If first movers and efficient producers are present in an
%----environment at a certain point of time, then this time-point belongs
%----to the the environment.
fof(mp_time_point_in_environment,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> in_environment(E,T) ) ).
%----MP. If first movers and efficient producers are present in an
%----environment at a certain point of time, then then the environment
%----is not empty at this time.
fof(mp_environment_not_empty,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> greater(number_of_organizations(E,T),zero) ) ).
%----MP. If there are only first movers and efficient producers in an
%----environment, then the number of organizations is the sum of members
%----in these groups.
fof(mp_only_members,axiom,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& ( greater(cardinality_at_time(X,T),zero)
=> ( X = efficient_producers
| X = first_movers ) ) )
=> number_of_organizations(E,T) = sum(cardinality_at_time(first_movers,T),cardinality_at_time(efficient_producers,T)) ) ).
%----MP. First movers and efficient producers are organisational groups.
fof(mp_FM_and_EP_organisational,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( subpopulation(first_movers,E,T)
& subpopulation(efficient_producers,E,T) ) ) ).
%----MP. If a constant "a" is the sum of "b" and "c", then either "b" and
%----"c" are also constants, or one of the two additives increases, while
%----the other decreases.
fof(mp_abc_sum_increase,axiom,
! [A,B,C] :
( ( A = sum(B,C)
& constant(A) )
=> ( ( constant(B)
& constant(C) )
| ( increases(B)
& decreases(C) )
| ( decreases(B)
& increases(C) ) ) ) ).
%----MP. If the number of a non-empty subpopulation is constant or
%----increases or decreases, then its growth rate is, respectively, zero
%----or positive or negative.
fof(mp_growth_rate,axiom,
! [X,E,T] :
( ( environment(E)
& in_environment(E,T)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( ( constant(cardinality_at_time(X,T))
=> growth_rate(X,T) = zero )
& ( increases(cardinality_at_time(X,T))
=> greater(growth_rate(X,T),zero) )
& ( decreases(cardinality_at_time(X,T))
=> greater(zero,growth_rate(X,T)) ) ) ) ).
%----MP. If a population in a certain environment consists of a first mover
%----and an efficient producer subpopulation at a certain point in time,
%----then the number of efficient producers are both positive at this time.
fof(mp_positive_number_of_organizations,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ( greater(cardinality_at_time(first_movers,T),zero)
& greater(cardinality_at_time(efficient_producers,T),zero) ) ) ).
%----MP. on inequality
fof(mp6_1,axiom,
! [X,Y] :
~ ( greater(X,Y)
& X = Y ) ).
fof(mp6_2,axiom,
! [X,Y] :
~ ( greater(X,Y)
& greater(Y,X) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. times in environment
fof(mp_times_in_environment,axiom,
! [E,T1,T2] :
( ( in_environment(E,T1)
& in_environment(E,T2) )
=> ( greater(T2,T1)
| T2 = T1
| greater(T1,T2) ) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----MP. on equilibrium
fof(mp_equilibrium,axiom,
! [E,T] :
( ( environment(E)
& greater_or_equal(T,equilibrium(E)) )
=> ~ greater(equilibrium(E),T) ) ).
%----D2. A subpopulation outcompetes an other in an environment at a
%----certain time, if and only if, it has non-negative growth rate while
%----the other subpopulation has negative growth rate.
fof(d2,hypothesis,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T) )
=> ( ( greater_or_equal(growth_rate(S2,T),zero)
& greater(zero,growth_rate(S1,T)) )
<=> outcompetes(S2,S1,T) ) ) ).
%----A4. Resource availability decreases until equilibrium is reached.
fof(a4,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(number_of_organizations(E,T),zero) )
=> ( ( greater(equilibrium(E),T)
=> decreases(resources(E,T)) )
& ( ~ greater(equilibrium(E),T)
=> constant(resources(E,T)) ) ) ) ).
%----A5. The state of equilibrium is reached in stable environments.
fof(a5,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [T] :
( in_environment(E,T)
& greater_or_equal(T,equilibrium(E)) ) ) ).
%----A7. If resource availability decreases, then the number of
%----organizations increases or constant.
fof(a7,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( ( decreases(resources(E,T))
=> ~ decreases(number_of_organizations(E,T)) )
& ( constant(resources(E,T))
=> constant(number_of_organizations(E,T)) ) ) ) ).
%----A11. The population contains only first movers and efficient producers.
fof(a11,hypothesis,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( X = efficient_producers
| X = first_movers ) ) ).
%----L1. The growth rate of efficient producers exceeds the growth rate of
%----first movers past a certain time in stable environments.
fof(l1,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----GOAL: T4. Efficient producers outcompete first movers past a certain
%----point of time in stable environments.
fof(prove_t4,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> outcompetes(efficient_producers,first_movers,T) ) ) ) ).
%--------------------------------------------------------------------------