TPTP Problem File: MGT035+2.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : MGT035+2 : TPTP v9.0.0. Released v2.0.0.
% Domain   : Management (Organisation Theory)
% Problem  : EPs outcompete FMs in stable environments
% Version  : [PM93] axioms.
% English  : Efficient producers outcompete first movers past a certain
%            time in stable environments.

% Refs     : [PM93]  Peli & Masuch (1993), The Logic of Propogation Strateg
%          : [PM94]  Peli & Masuch (1994), The Logic of Propogation Strateg
%          : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source   : [PM93]
% Names    : THEOREM 4 [PM93]
%          : T4 [PB+94]

% Status   : Theorem
% Rating   : 0.52 v9.0.0, 0.58 v8.2.0, 0.56 v8.1.0, 0.58 v7.5.0, 0.62 v7.4.0, 0.43 v7.3.0, 0.52 v7.2.0, 0.48 v7.1.0, 0.52 v7.0.0, 0.43 v6.4.0, 0.46 v6.3.0, 0.54 v6.2.0, 0.52 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.62 v4.1.0, 0.70 v4.0.1, 0.74 v4.0.0, 0.71 v3.7.0, 0.75 v3.5.0, 0.79 v3.4.0, 0.74 v3.3.0, 0.79 v3.2.0, 0.91 v3.1.0, 0.89 v2.7.0, 0.83 v2.6.0, 0.86 v2.5.0, 1.00 v2.4.0, 0.75 v2.3.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax   : Number of formulae    :   20 (   0 unt;   0 def)
%            Number of atoms       :   95 (  10 equ)
%            Maximal formula atoms :   10 (   4 avg)
%            Number of connectives :   80 (   5   ~;   7   |;  39   &)
%                                         (   2 <=>;  27  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   6 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   12 (  11 usr;   0 prp; 1-4 aty)
%            Number of functors    :    9 (   9 usr;   3 con; 0-2 aty)
%            Number of variables   :   50 (  47   !;   3   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. If first movers and efficient producers are present in an
%----environment  at a certain point of time, then this time-point belongs
%----to the the environment.
fof(mp_time_point_in_environment,axiom,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => in_environment(E,T) ) ).

%----MP. If first movers and efficient producers are present in an
%----environment  at a certain point of time, then then the environment
%----is not empty at this time.
fof(mp_environment_not_empty,axiom,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => greater(number_of_organizations(E,T),zero) ) ).

%----MP. If there are only first movers and efficient producers in an
%----environment, then the number of organizations is the sum of members
%----in these groups.
fof(mp_only_members,axiom,
    ! [E,X,T] :
      ( ( environment(E)
        & subpopulation(X,E,T)
        & ( greater(cardinality_at_time(X,T),zero)
         => ( X = efficient_producers
            | X = first_movers ) ) )
     => number_of_organizations(E,T) = sum(cardinality_at_time(first_movers,T),cardinality_at_time(efficient_producers,T)) ) ).

%----MP. First movers and efficient producers are organisational groups.
fof(mp_FM_and_EP_organisational,axiom,
    ! [E,T] :
      ( ( environment(E)
        & in_environment(E,T) )
     => ( subpopulation(first_movers,E,T)
        & subpopulation(efficient_producers,E,T) ) ) ).

%----MP. If a constant "a" is the sum of "b" and "c", then either "b" and
%----"c" are also constants, or one of the two additives increases, while
%----the other decreases.
fof(mp_abc_sum_increase,axiom,
    ! [A,B,C] :
      ( ( A = sum(B,C)
        & constant(A) )
     => ( ( constant(B)
          & constant(C) )
        | ( increases(B)
          & decreases(C) )
        | ( decreases(B)
          & increases(C) ) ) ) ).

%----MP. If the number of a non-empty subpopulation is constant or
%----increases or decreases, then its growth rate is, respectively, zero
%----or positive or negative.
fof(mp_growth_rate,axiom,
    ! [X,E,T] :
      ( ( environment(E)
        & in_environment(E,T)
        & subpopulation(X,E,T)
        & greater(cardinality_at_time(X,T),zero) )
     => ( ( constant(cardinality_at_time(X,T))
         => growth_rate(X,T) = zero )
        & ( increases(cardinality_at_time(X,T))
         => greater(growth_rate(X,T),zero) )
        & ( decreases(cardinality_at_time(X,T))
         => greater(zero,growth_rate(X,T)) ) ) ) ).

%----MP. If a population in a certain environment consists of a first mover
%----and an efficient producer subpopulation at a certain point in time,
%----then the number of efficient producers are both positive at this time.
fof(mp_positive_number_of_organizations,axiom,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => ( greater(cardinality_at_time(first_movers,T),zero)
        & greater(cardinality_at_time(efficient_producers,T),zero) ) ) ).

%----MP. on inequality
fof(mp6_1,axiom,
    ! [X,Y] :
      ~ ( greater(X,Y)
        & X = Y ) ).

fof(mp6_2,axiom,
    ! [X,Y] :
      ~ ( greater(X,Y)
        & greater(Y,X) ) ).

%----MP. inequality
fof(mp_greater_transitivity,axiom,
    ! [X,Y,Z] :
      ( ( greater(X,Y)
        & greater(Y,Z) )
     => greater(X,Z) ) ).

%----MP. times in environment
fof(mp_times_in_environment,axiom,
    ! [E,T1,T2] :
      ( ( in_environment(E,T1)
        & in_environment(E,T2) )
     => ( greater(T2,T1)
        | T2 = T1
        | greater(T1,T2) ) ) ).

%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
    ! [X,Y] :
      ( greater_or_equal(X,Y)
    <=> ( greater(X,Y)
        | X = Y ) ) ).

%----MP. on equilibrium
fof(mp_equilibrium,axiom,
    ! [E,T] :
      ( ( environment(E)
        & greater_or_equal(T,equilibrium(E)) )
     => ~ greater(equilibrium(E),T) ) ).

%----D2. A subpopulation outcompetes an other in an environment at a
%----certain time, if and only if, it has non-negative growth rate while
%----the other subpopulation has negative growth rate.
fof(d2,hypothesis,
    ! [E,S1,S2,T] :
      ( ( environment(E)
        & subpopulations(S1,S2,E,T) )
     => ( ( greater_or_equal(growth_rate(S2,T),zero)
          & greater(zero,growth_rate(S1,T)) )
      <=> outcompetes(S2,S1,T) ) ) ).

%----A4. Resource availability decreases until equilibrium is reached.
fof(a4,hypothesis,
    ! [E,T] :
      ( ( environment(E)
        & in_environment(E,T)
        & greater(number_of_organizations(E,T),zero) )
     => ( ( greater(equilibrium(E),T)
         => decreases(resources(E,T)) )
        & ( ~ greater(equilibrium(E),T)
         => constant(resources(E,T)) ) ) ) ).

%----A5. The state of equilibrium is reached in stable environments.
fof(a5,hypothesis,
    ! [E] :
      ( ( environment(E)
        & stable(E) )
     => ? [T] :
          ( in_environment(E,T)
          & greater_or_equal(T,equilibrium(E)) ) ) ).

%----A7. If resource availability decreases, then the number of
%----organizations increases or constant.
fof(a7,hypothesis,
    ! [E,T] :
      ( ( environment(E)
        & in_environment(E,T) )
     => ( ( decreases(resources(E,T))
         => ~ decreases(number_of_organizations(E,T)) )
        & ( constant(resources(E,T))
         => constant(number_of_organizations(E,T)) ) ) ) ).

%----A11. The population contains only first movers and efficient producers.
fof(a11,hypothesis,
    ! [E,X,T] :
      ( ( environment(E)
        & subpopulation(X,E,T)
        & greater(cardinality_at_time(X,T),zero) )
     => ( X = efficient_producers
        | X = first_movers ) ) ).

%----L1. The growth rate of efficient producers exceeds the growth rate of
%----first movers past a certain time in stable environments.
fof(l1,hypothesis,
    ! [E] :
      ( ( environment(E)
        & stable(E) )
     => ? [To] :
          ( in_environment(E,To)
          & ! [T] :
              ( ( subpopulations(first_movers,efficient_producers,E,T)
                & greater_or_equal(T,To) )
             => greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).

%----GOAL: T4. Efficient producers outcompete first movers past a certain
%----point of time in stable environments.
fof(prove_t4,conjecture,
    ! [E] :
      ( ( environment(E)
        & stable(E) )
     => ? [To] :
          ( in_environment(E,To)
          & ! [T] :
              ( ( subpopulations(first_movers,efficient_producers,E,T)
                & greater_or_equal(T,To) )
             => outcompetes(efficient_producers,first_movers,T) ) ) ) ).

%--------------------------------------------------------------------------