TPTP Problem File: MGT035+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT035+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : EPs outcompete FMs in stable environments
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : Efficient producers outcompete first movers past a certain
% time in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.25 v8.2.0, 0.19 v8.1.0, 0.25 v7.5.0, 0.31 v7.4.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.13 v7.0.0, 0.17 v6.4.0, 0.19 v6.3.0, 0.12 v6.2.0, 0.24 v6.1.0, 0.30 v6.0.0, 0.13 v5.5.0, 0.33 v5.4.0, 0.43 v5.3.0, 0.41 v5.2.0, 0.15 v5.1.0, 0.19 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.0, 0.29 v3.7.0, 0.30 v3.5.0, 0.26 v3.4.0, 0.37 v3.3.0, 0.43 v3.2.0, 0.45 v3.1.0, 0.56 v2.7.0, 0.50 v2.6.0, 0.57 v2.5.0, 0.62 v2.4.0, 0.75 v2.3.0, 0.67 v2.2.1, 0.00 v2.2.0, 0.50 v2.1.0
% Syntax : Number of formulae : 8 ( 0 unt; 0 def)
% Number of atoms : 41 ( 4 equ)
% Maximal formula atoms : 9 ( 5 avg)
% Number of connectives : 33 ( 0 ~; 5 |; 17 &)
% ( 2 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 22 ( 19 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. times in environment
fof(mp_times_in_environment,axiom,
! [E,T1,T2] :
( ( in_environment(E,T1)
& in_environment(E,T2) )
=> ( greater(T2,T1)
| T2 = T1
| greater(T1,T2) ) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----D2. A subpopulation outcompetes an other in an environment at a
%----certain time, if and only if, it has non-negative growth rate while
%----the other subpopulation has negative growth rate.
fof(d2,hypothesis,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T) )
=> ( ( greater_or_equal(growth_rate(S2,T),zero)
& greater(zero,growth_rate(S1,T)) )
<=> outcompetes(S2,S1,T) ) ) ).
%----L6. If a subpopulation has positive growth rate, then the
%----other subpopulation must have negative growth rate in equilibrium.
fof(l6,hypothesis,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,equilibrium(E)) )
=> ( ( growth_rate(first_movers,T) = zero
& growth_rate(efficient_producers,T) = zero )
| ( greater(growth_rate(first_movers,T),zero)
& greater(zero,growth_rate(efficient_producers,T)) )
| ( greater(growth_rate(efficient_producers,T),zero)
& greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%----L1. The growth rate of efficient producers exceeds the growth rate of
%----first movers past a certain time in stable environments.
fof(l1,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----A4. The state of equilibrium is reached in stable environments.
fof(a4,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [T] :
( in_environment(E,T)
& greater_or_equal(T,equilibrium(E)) ) ) ).
%----GOAL: T4. Efficient producers outcompete first movers past a certain
%----point of time in stable environments.
fof(prove_t4,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> outcompetes(efficient_producers,first_movers,T) ) ) ) ).
%--------------------------------------------------------------------------