TPTP Problem File: MGT034+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT034+2 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favors FMs above EPs until critical point reached
% Version : [PM93] axioms.
% English : Selection favors first movers above efficient producers past
% the appearance of efficient producers until the critical
% point is reached.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source : [PM93]
% Names : THEOREM 3 [PM93]
% : T3 [PB+94]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.25 v8.2.0, 0.22 v8.1.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.17 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.17 v6.4.0, 0.23 v6.3.0, 0.17 v6.2.0, 0.20 v6.1.0, 0.30 v6.0.0, 0.09 v5.5.0, 0.33 v5.4.0, 0.32 v5.3.0, 0.41 v5.2.0, 0.25 v5.1.0, 0.19 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.1, 0.17 v3.7.0, 0.15 v3.5.0, 0.16 v3.4.0, 0.26 v3.3.0, 0.29 v3.2.0, 0.18 v3.1.0, 0.33 v2.6.0, 0.29 v2.5.0, 0.25 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 21 ( 0 unt; 0 def)
% Number of atoms : 80 ( 2 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 63 ( 4 ~; 1 |; 35 &)
% ( 3 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 11 ( 11 usr; 3 con; 0-2 aty)
% Number of variables : 43 ( 43 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP1. Selection favors subpopulations with higher growth rates.
fof(mp1_high_growth_rates,axiom,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T)
& greater(growth_rate(S2,T),growth_rate(S1,T)) )
=> selection_favors(S2,S1,T) ) ).
%----L3. The difference between the disbanding rates of first movers and
%----efficient producers does not decrease.
fof(l3,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ).
%----MP. If the environment contains a critical point, then FM and EP are
%----present at this time.
fof(mp_critical_point_means_FM_and_EP,axiom,
! [E] :
( ( environment(E)
& in_environment(E,critical_point(E)) )
=> subpopulations(first_movers,efficient_producers,E,critical_point(E)) ) ).
%----MP. FM and EP are present when EP appear in the environment.
fof(mp_FM_and_EP_when_EP_appears,axiom,
! [E] :
( ( environment(E)
& in_environment(E,appear(efficient_producers,E)) )
=> subpopulations(first_movers,efficient_producers,E,appear(efficient_producers,E)) ) ).
%----MP. If the difference between the founding rates of FM and EP
%----decreases and the difference between their disbanding rates does
%----not decrease, then the difference between the growth rates decreases.
fof(mp_difference_between_founding_rates,axiom,
! [T] :
( ( decreases(difference(founding_rate(first_movers,T),founding_rate(efficient_producers,T)))
& ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) )
=> decreases(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T))) ) ).
%----MP. If function "f" is decreasing until to, and it is not negative at
%----"to, then its value is positive before "to".
%----INSTANTIATION: f(x) = (growth_rate(first_movers,x) -
%----growth_rate(efficient_producers,x)
fof(mp_decreasing_function,axiom,
! [E,T,To] :
( ( environment(E)
& in_environment(E,To)
& greater_or_equal(difference(growth_rate(first_movers,To),growth_rate(efficient_producers,To)),zero)
& greater_or_equal(T,appear(efficient_producers,E))
& greater(To,T) )
=> ( decreases(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))
=> greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero) ) ) ).
%----MP. The difference between the growth rates of first movers and
%----efficient producers is negative, if and only if, the growth rate of
%----efficient producers is higher.
fof(mp_negative_growth_rate_difference,axiom,
! [T] :
( greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))
<=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ).
%----MP. The difference between the growth rates of first movers and
%----efficient producers is positive, if and only if, the growth rate of
%----first movers is higher.
fof(mp_positive_growth_rate_difference,axiom,
! [T] :
( greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero)
<=> greater(growth_rate(first_movers,T),growth_rate(efficient_producers,T)) ) ).
%----MP. The durations of environments are time-intervals.
fof(mp_durations_are_time_intervals,axiom,
! [E,T1,T2,T] :
( ( environment(E)
& in_environment(E,T1)
& in_environment(E,T2)
& greater_or_equal(T2,T)
& greater_or_equal(T,T1) )
=> in_environment(E,T) ) ).
%----MP. The opening time of the environment belongs to the environment's
%----duration.
fof(mp_opening_time_in_duration,axiom,
! [E] :
( environment(E)
=> in_environment(E,start_time(E)) ) ).
%----MP. FM cannot appear in an environment before it opens.
fof(mp_no_FM_before_opening,axiom,
! [E] :
( environment(E)
=> greater_or_equal(appear(first_movers,E),start_time(E)) ) ).
%----MP. If the critical point occurs in the environment, then all the
%----time-points between the appearence of efficient producers and the
%----critical point occur in the environnment.
fof(mp_critical_time_points,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,critical_point(E))
& greater_or_equal(T,appear(efficient_producers,E))
& greater(critical_point(E),T) )
=> in_environment(E,T) ) ).
%----MP. If the number of both first movers and efficient producers is
%----positive in an environment, then the population in this environment
%----contains a first mover and an efficient producer subpopulation.
fof(mp_contains_FM_and_EP,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(cardinality_at_time(first_movers,T),zero)
& greater(cardinality_at_time(efficient_producers,T),zero) )
=> subpopulations(first_movers,efficient_producers,E,T) ) ).
%----MP. The "subpopulation" predicate is symmetric: if FM and EP are
%----non-empty subpopulations in E, then EP and FM are also non-empty
%----subpopulations in E.
fof(mp_symmetry_of_subpopulations,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> subpopulations(efficient_producers,first_movers,E,T) ) ).
%----MP. If FM and EP have members in an environment at a certain point of
%----time, then EP's appearence time is already passed.
fof(mp_FM_and_EP_members_EP_appeared,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> greater_or_equal(T,appear(efficient_producers,E)) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----MP. on growth rates
fof(mp_relationship_of_growth_rates,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& ~ greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T))) )
=> greater_or_equal(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero) ) ).
%----D1(<=). If a time-point is the critical point of the environment, then
%----it is the earliest time past which the growth rate of efficient
%----producers permanently exceeds growth rate of first movers.
fof(d1,hypothesis,
! [E,Tc] :
( ( environment(E)
& Tc = critical_point(E) )
=> ( ~ greater(growth_rate(efficient_producers,Tc),growth_rate(first_movers,Tc))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater(T,Tc) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----A10. If FM and EP are present in the environment at time-points t1
%----and t2, then they are present during the time-interval between
%----t1 and t2.
fof(a10,hypothesis,
! [E,T1,T2,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T1)
& subpopulations(first_movers,efficient_producers,E,T2)
& greater_or_equal(T,T1)
& greater_or_equal(T2,T) )
=> subpopulations(first_movers,efficient_producers,E,T) ) ).
%----A12. The difference between the founding rates of first movers and
%----efficient producers decreases with time.
fof(a12,hypothesis,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> decreases(difference(founding_rate(first_movers,T),founding_rate(efficient_producers,T))) ) ).
%----GOAL: T3. Selection favors first movers above efficient producers
%----between the appearence of efficient producers and the critical point.
fof(prove_t3,conjecture,
! [E,T] :
( ( environment(E)
& in_environment(E,critical_point(E))
& greater_or_equal(T,appear(efficient_producers,E))
& greater(critical_point(E),T) )
=> selection_favors(first_movers,efficient_producers,T) ) ).
%--------------------------------------------------------------------------