TPTP Problem File: MGT029-1.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : MGT029-1 : TPTP v8.2.0. Released v2.4.0.
% Domain   : Management (Organisation Theory)
% Problem  : EPs have positive and FMs have negative growth rates
% Version  : [PB+94] axioms : Reduced & Augmented > Complete.
% English  : Efficient producers have positive, while first movers have
%            negative growth rate past a certain point of time in stable
%            environments.

% Refs     : [PM93]  Peli & Masuch (1993), The Logic of Propogation Strateg
%          : [PM94]  Peli & Masuch (1994), The Logic of Propogation Strateg
%          : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source   : [TPTP]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.15 v8.2.0, 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.20 v5.5.0, 0.45 v5.3.0, 0.33 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.15 v4.0.1, 0.09 v4.0.0, 0.18 v3.7.0, 0.10 v3.5.0, 0.18 v3.4.0, 0.42 v3.3.0, 0.43 v3.2.0, 0.54 v3.1.0, 0.36 v2.7.0, 0.50 v2.6.0, 0.44 v2.5.0, 0.56 v2.4.0
% Syntax   : Number of clauses     :   22 (   2 unt;  10 nHn;  22 RR)
%            Number of literals    :   86 (  11 equ;  46 neg)
%            Maximal clause size   :    6 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    7 (   6 usr;   0 prp; 1-4 aty)
%            Number of functors    :    9 (   9 usr;   4 con; 0-2 aty)
%            Number of variables   :   36 (   0 sgn)
% SPC      : CNF_UNS_RFO_SEQ_NHN

% Comments : Created with tptp2X -f tptp -t clausify:otter MGT029+1.p
%--------------------------------------------------------------------------
cnf(mp_greater_transitivity_19,axiom,
    ( ~ greater(A,B)
    | ~ greater(B,C)
    | greater(A,C) ) ).

cnf(mp_times_in_environment_20,axiom,
    ( ~ in_environment(A,B)
    | ~ in_environment(A,C)
    | greater(C,B)
    | C = B
    | greater(B,C) ) ).

cnf(mp_greater_or_equal_21,axiom,
    ( ~ greater_or_equal(A,B)
    | greater(A,B)
    | A = B ) ).

cnf(mp_greater_or_equal_22,axiom,
    ( ~ greater(A,B)
    | greater_or_equal(A,B) ) ).

cnf(mp_greater_or_equal_23,axiom,
    ( A != B
    | greater_or_equal(A,B) ) ).

cnf(l6_24,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(first_movers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(growth_rate(efficient_producers,B),zero) ) ).

cnf(l6_25,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(first_movers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(zero,growth_rate(first_movers,B)) ) ).

cnf(l6_26,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(first_movers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(growth_rate(efficient_producers,B),zero) ) ).

cnf(l6_27,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(first_movers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(zero,growth_rate(first_movers,B)) ) ).

cnf(l6_28,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(efficient_producers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(growth_rate(efficient_producers,B),zero) ) ).

cnf(l6_29,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(efficient_producers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(zero,growth_rate(first_movers,B)) ) ).

cnf(l6_30,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(efficient_producers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(growth_rate(efficient_producers,B),zero) ) ).

cnf(l6_31,hypothesis,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,equilibrium(A))
    | growth_rate(efficient_producers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(zero,growth_rate(first_movers,B)) ) ).

cnf(l1_32,hypothesis,
    ( ~ environment(A)
    | ~ stable(A)
    | in_environment(A,sk1(A)) ) ).

cnf(l1_33,hypothesis,
    ( ~ environment(A)
    | ~ stable(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater_or_equal(B,sk1(A))
    | greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)) ) ).

cnf(a4_34,hypothesis,
    ( ~ environment(A)
    | ~ stable(A)
    | in_environment(A,sk2(A)) ) ).

cnf(a4_35,hypothesis,
    ( ~ environment(A)
    | ~ stable(A)
    | greater_or_equal(sk2(A),equilibrium(A)) ) ).

cnf(prove_l11_36,negated_conjecture,
    environment(sk3) ).

cnf(prove_l11_37,negated_conjecture,
    stable(sk3) ).

cnf(prove_l11_38,negated_conjecture,
    ( ~ in_environment(sk3,A)
    | subpopulations(first_movers,efficient_producers,sk3,sk4(A)) ) ).

cnf(prove_l11_39,negated_conjecture,
    ( ~ in_environment(sk3,A)
    | greater_or_equal(sk4(A),A) ) ).

cnf(prove_l11_40,negated_conjecture,
    ( ~ in_environment(sk3,A)
    | ~ greater(growth_rate(efficient_producers,sk4(A)),zero)
    | ~ greater(zero,growth_rate(first_movers,sk4(A))) ) ).

%--------------------------------------------------------------------------