TPTP Problem File: MGT005+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT005+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Complexity increases the risk of death due to reorganization.
% Version : [PB+94] axioms.
% English :
% Refs : [PB+92] Peli et al. (1992), A Logical Approach to Formalizing
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% Source : [Kam94]
% Names : THEOREM 5 [PB+92]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.31 v8.2.0, 0.28 v8.1.0, 0.22 v7.5.0, 0.28 v7.4.0, 0.17 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.17 v6.2.0, 0.28 v6.1.0, 0.37 v6.0.0, 0.35 v5.5.0, 0.37 v5.4.0, 0.36 v5.3.0, 0.44 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.25 v4.1.0, 0.30 v4.0.0, 0.33 v3.7.0, 0.14 v3.5.0, 0.11 v3.4.0, 0.08 v3.3.0, 0.22 v3.2.0, 0.33 v3.1.0, 0.50 v2.7.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.50 v2.1.0
% Syntax : Number of formulae : 11 ( 0 unt; 0 def)
% Number of atoms : 83 ( 2 equ)
% Maximal formula atoms : 19 ( 7 avg)
% Number of connectives : 76 ( 4 ~; 1 |; 62 &)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 31 ( 13 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 2-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 62 ( 61 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : mp11, mp12 and mp13 correspond to mp10, mp11 and mp12
% respectively from [PB+92]
%--------------------------------------------------------------------------
%----Problem axioms
fof(mp6_1,axiom,
! [X,Y] :
~ ( greater(X,Y)
& X = Y ) ).
fof(mp6_2,axiom,
! [X,Y] :
~ ( greater(X,Y)
& greater(Y,X) ) ).
fof(mp11,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
fof(mp12,axiom,
! [X,T] :
( organization(X,T)
=> ? [P] : survival_chance(X,P,T) ) ).
fof(mp13,axiom,
! [X,T,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& greater(T,T1)
& greater(T2,T) )
=> organization(X,T) ) ).
fof(mp7,axiom,
! [X,Ta,Tb] :
( reorganization(X,Ta,Tb)
=> greater(Tb,Ta) ) ).
fof(t3_FOL,hypothesis,
! [X,P1,P2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization_free(X,T1,T2)
& survival_chance(X,P1,T1)
& survival_chance(X,P2,T2)
& greater(T2,T1) )
=> greater(P2,P1) ) ).
%----t4_FOL - alias a9_FOL
fof(t4_FOL,hypothesis,
! [X,P1,P2,T1,T2,Ta,Tb] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization(X,Ta,Tb)
& survival_chance(X,P1,T1)
& survival_chance(X,P2,T2)
& ~ greater(Ta,T1)
& greater(T2,T1)
& ~ greater(T2,Tb) )
=> greater(P1,P2) ) ).
%----Complexity increases the expected duration of reorganization.
fof(a10_FOL,hypothesis,
! [X,Y,Re,C,C1,C2,Ta,Tb,Tc] :
( ( organization(X,Ta)
& organization(Y,Ta)
& organization(Y,Tc)
& class(X,C,Ta)
& class(Y,C,Ta)
& reorganization(X,Ta,Tb)
& reorganization(Y,Ta,Tc)
& reorganization_type(X,Re,Ta)
& reorganization_type(Y,Re,Ta)
& complexity(X,C1,Ta)
& complexity(Y,C2,Ta)
& greater(C2,C1) )
=> greater(Tc,Tb) ) ).
%----Complexity is no survival advantage during reorganization.
fof(a11_FOL,hypothesis,
! [X,Y,Re,C,P,P1,P2,C1,C2,Ta,Tb,Tc] :
( ( organization(X,Ta)
& organization(Y,Ta)
& organization(X,Tb)
& organization(Y,Tb)
& class(X,C,Ta)
& class(Y,C,Ta)
& survival_chance(X,P,Ta)
& survival_chance(Y,P,Ta)
& reorganization(X,Ta,Tb)
& reorganization(Y,Ta,Tc)
& reorganization_type(X,Re,Ta)
& reorganization_type(Y,Re,Ta)
& survival_chance(X,P1,Tb)
& survival_chance(Y,P2,Tb)
& complexity(X,C1,Ta)
& complexity(Y,C2,Ta)
& greater(C2,C1) )
=> ( greater(P1,P2)
| P1 = P2 ) ) ).
fof(t5_FOL,conjecture,
! [X,Y,Re,C,P,P1,P2,C1,C2,Ta,Tb,Tc] :
( ( organization(X,Ta)
& organization(Y,Ta)
& organization(X,Tc)
& organization(Y,Tc)
& class(X,C,Ta)
& class(Y,C,Ta)
& survival_chance(X,P,Ta)
& survival_chance(Y,P,Ta)
& reorganization(X,Ta,Tb)
& reorganization(Y,Ta,Tc)
& reorganization_type(X,Re,Ta)
& reorganization_type(Y,Re,Ta)
& reorganization_free(X,Tb,Tc)
& survival_chance(X,P1,Tc)
& survival_chance(Y,P2,Tc)
& complexity(X,C1,Ta)
& complexity(Y,C2,Ta)
& greater(C2,C1) )
=> greater(P1,P2) ) ).
%--------------------------------------------------------------------------