## TPTP Problem File: LDA040-1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : LDA040-1 : TPTP v7.5.0. Released v4.1.0.
% Domain   : LD-Algebras
% Problem  : Identity yy in the equational theory of group conjugation
% Version  : Especial.
% English  :

% Refs     : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% Source   : [Sta09]
% Names    : conjyy [Sta09]

% Status   : Satisfiable
% Rating   : 0.75 v7.1.0, 0.67 v6.4.0, 1.00 v4.1.0
% Syntax   : Number of clauses     :    4 (   0 non-Horn;   4 unit;   1 RR)
%            Number of atoms       :    4 (   4 equality)
%            Maximal clause size   :    1 (   1 average)
%            Number of predicates  :    1 (   0 propositional; 2-2 arity)
%            Number of functors    :    4 (   3 constant; 0-2 arity)
%            Number of variables   :    8 (   0 singleton)
%            Maximal term depth    :    5 (   4 average)
% SPC      : CNF_SAT_RFO_PEQ_UEQ

% Comments : These are somehwat different from other LDA problems.
%------------------------------------------------------------------------------
cnf(sos01,axiom,
( product(A,A) = A )).

cnf(sos02,axiom,
( product(A,product(B,C)) = product(product(A,B),product(A,C)) )).

cnf(sos03,axiom,
( product(product(product(A,B),product(product(C,A),A)),product(product(product(A,B),C),product(product(C,A),D))) = product(product(product(A,B),product(C,A)),product(product(product(A,B),product(A,C)),product(product(C,A),D))) )).

cnf(goals,negated_conjecture,
( product(product(product(x0,product(x1,x0)),product(product(x1,x0),x0)),product(product(x0,x1),x2)) != product(product(product(x0,product(x1,x0)),product(x1,x0)),product(product(x0,product(x0,x1)),x2)) )).

%------------------------------------------------------------------------------
```