TPTP Problem File: LDA002-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LDA002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : LD-Algebras
% Problem : Verify 3*2(U2)(UU(UU)) = U1(U3)(UU(UU))
% Version : [Jec93] (equality) axioms.
% English :
% Refs : [Jec93] Jech (1993), LD-Algebras
% Source : [Jec93]
% Names : Problem 2 [Jec93]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.08 v8.1.0, 0.10 v7.5.0, 0.08 v7.4.0, 0.22 v7.3.0, 0.11 v7.1.0, 0.06 v7.0.0, 0.11 v6.4.0, 0.21 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.00 v5.2.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 11 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 11 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----A1: x(yz)=xy(xz)
cnf(a1,axiom,
f(X,f(Y,Z)) = f(f(X,Y),f(X,Z)) ).
cnf(clause_2,axiom,
n2 = f(n1,n1) ).
cnf(clause_3,axiom,
n3 = f(n2,n1) ).
cnf(clause_4,axiom,
u = f(n2,n2) ).
cnf(clause_5,axiom,
u1 = f(u,n1) ).
cnf(clause_6,axiom,
u2 = f(u,n2) ).
cnf(clause_7,axiom,
u3 = f(u,n3) ).
cnf(clause_8,axiom,
uu = f(u,u) ).
cnf(clause_9,axiom,
a = f(f(n3,n2),u2) ).
cnf(clause_10,axiom,
b = f(u1,u3) ).
cnf(clause_11,axiom,
v = f(uu,uu) ).
%----3*2*U2*(UU*UU) = U1*U3*(uU*UU)
cnf(prove_equation,negated_conjecture,
f(a,v) != f(b,v) ).
%--------------------------------------------------------------------------