TPTP Problem File: LCL927-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL927-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : AxK and AxC in TW+ [AxL,AxTO] + (Resid)
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.95 v8.2.0, 0.96 v8.1.0, 0.90 v7.5.0, 0.96 v7.3.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-4 aty)
% Number of variables : 21 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LCL927-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(modus_ponens,axiom,
ifeq(p(i(A,B)),true,ifeq(p(A),true,p(B),true),true) = true ).
cnf(resid1,axiom,
ifeq(p(i(f(A,B),C)),true,p(i(A,i(B,C))),true) = true ).
cnf(resid2,axiom,
ifeq(p(i(A,i(B,C))),true,p(i(f(A,B),C)),true) = true ).
cnf(axBp,axiom,
p(i(i(A,B),i(i(B,C),i(A,C)))) = true ).
cnf(axL,axiom,
p(i(i(i(X,Y),Y),i(i(Y,X),X))) = true ).
cnf(axTO,axiom,
p(i(i(i(X,Y),i(Y,X)),i(Y,X))) = true ).
cnf(axK_axC,negated_conjecture,
tuple(p(i(i(A,i(B,C)),i(B,i(A,C)))),p(i(c1,i(c2,c1)))) != tuple(true,true) ).
%------------------------------------------------------------------------------