TPTP Problem File: LCL894+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL894+1 : TPTP v9.0.0. Released v5.5.0.
% Domain : Logic Calculi (Continuous Propositional)
% Problem : Weak conjunction is lub in a hoop using horn axioms
% Version : [AO13] axioms : Especial.
% English :
% Refs : [Art12] Arthan (2012), Email to Geoff Sutcliffe
% : [AO13] Arthan & Olica (2013), Dual Hoops Have Unique Halving
% Source : [Art12]
% Names : pr3a.tptp [Art12]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.56 v8.2.0, 0.58 v8.1.0, 0.56 v7.5.0, 0.59 v7.4.0, 0.47 v7.3.0, 0.52 v7.2.0, 0.48 v7.1.0, 0.52 v7.0.0, 0.57 v6.4.0, 0.54 v6.3.0, 0.50 v6.2.0, 0.56 v6.1.0, 0.63 v6.0.0, 0.61 v5.5.0
% Syntax : Number of formulae : 13 ( 6 unt; 0 def)
% Number of atoms : 23 ( 5 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 10 ( 0 ~; 0 |; 3 &)
% ( 2 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 27 ( 27 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(sos_01,axiom,
! [A,B,C] : '+'('+'(A,B),C) = '+'(A,'+'(B,C)) ).
fof(sos_02,axiom,
! [A,B] : '+'(A,B) = '+'(B,A) ).
fof(sos_03,axiom,
! [A] : '+'(A,'0') = A ).
fof(sos_04,axiom,
! [A] : '>='(A,A) ).
fof(sos_05,axiom,
! [X0,X1,X2] :
( ( '>='(X0,X1)
& '>='(X1,X2) )
=> '>='(X0,X2) ) ).
fof(sos_06,axiom,
! [X3,X4] :
( ( '>='(X3,X4)
& '>='(X4,X3) )
=> X3 = X4 ) ).
fof(sos_07,axiom,
! [X5,X6,X7] :
( '>='('+'(X5,X6),X7)
<=> '>='(X6,'==>'(X5,X7)) ) ).
fof(sos_08,axiom,
! [A] : '>='(A,'0') ).
fof(sos_09,axiom,
! [X8,X9,X10] :
( '>='(X8,X9)
=> '>='('+'(X8,X10),'+'(X9,X10)) ) ).
fof(sos_10,axiom,
! [X11,X12,X13] :
( '>='(X11,X12)
=> '>='('==>'(X12,X13),'==>'(X11,X13)) ) ).
fof(sos_11,axiom,
! [X14,X15,X16] :
( '>='(X14,X15)
=> '>='('==>'(X16,X14),'==>'(X16,X15)) ) ).
fof(sos_12,axiom,
! [A,B] : '+'(A,'==>'(A,B)) = '+'(B,'==>'(B,A)) ).
fof(goals_13,conjecture,
( ( '>='(c,a)
& '>='(c,b) )
<=> '>='(c,'+'(a,'==>'(a,b))) ) ).
%--------------------------------------------------------------------------