TPTP Problem File: LCL877^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL877^2 : TPTP v9.0.0. Released v5.2.0.
% Domain : Logic Calculi (Doxastic multimodal logic)
% Problem : Variants of axiom 5
% Version : [Ben11] axioms.
% English :
% Refs : [Ben11] Benzmueller (2011), Email to Geoff Sutcliffe
% : [Ben11] Benzmueller (2011), Combining and Automating Classical
% Source : [Ben11]
% Names : Ex_7_2 [Ben11]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.60 v5.2.0
% Syntax : Number of formulae : 64 ( 31 unt; 32 typ; 31 def)
% Number of atoms : 101 ( 36 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 137 ( 4 ~; 4 |; 8 &; 112 @)
% ( 1 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 171 ( 171 >; 0 *; 0 +; 0 <<)
% Number of symbols : 39 ( 37 usr; 7 con; 0-3 aty)
% Number of variables : 86 ( 50 ^; 30 !; 6 ?; 86 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include embedding of quantified multimodal logic in simple type theory
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
thf(conj,conjecture,
! [R: $i > $i > $o] :
( ( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mnot @ ( mbox @ R @ Phi ) ) @ ( mbox @ R @ ( mnot @ ( mbox @ R @ Phi ) ) ) ) ) )
<=> ( meuclidean @ R ) ) ).
%------------------------------------------------------------------------------