TPTP Problem File: LCL876+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL876+1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Logic Calculi (Many valued sentential)
% Problem : Prove Mv5 from MV1--MV4
% Version : Especial.
% English :
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.93 v9.0.0, 0.94 v8.2.0, 0.93 v7.5.0, 0.95 v7.4.0, 0.94 v7.3.0, 0.86 v7.2.0, 0.83 v7.1.0, 0.75 v7.0.0, 0.93 v6.3.0, 0.92 v6.2.0, 0.91 v6.1.0, 1.00 v5.2.0
% Syntax : Number of formulae : 6 ( 5 unt; 0 def)
% Number of atoms : 8 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 13 ( 13 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(cd,axiom,
! [Y,X] :
( ( is_a_theorem(implies(X,Y))
& is_a_theorem(X) )
=> is_a_theorem(Y) ) ).
fof(mv1,axiom,
! [Y,X] : is_a_theorem(implies(X,implies(Y,X))) ).
fof(mv2,axiom,
! [Z,Y,X] : is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
fof(mv3,axiom,
! [Y,X] : is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X))) ).
fof(mv4,axiom,
! [Y,X] : is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X))) ).
fof(mv5,conjecture,
! [Y,X] : is_a_theorem(implies(implies(implies(X,Y),implies(Y,X)),implies(Y,X))) ).
%--------------------------------------------------------------------------