TPTP Problem File: LCL874^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL874^1 : TPTP v9.0.0. Bugfixed v5.0.0.
% Domain : Logical Calculi (Modal logic)
% Problem : Inclusion statement in a 2-D logic of knowledge and belief
% Version : [Ben10] axioms.
% English : Suppose we want to work with a 2-dimensional logic combining a
% modality box_k of knowledge with a modality box_b of belief.
% Moreover, suppose we model box_k as an S5 modality and box_b as
% an D45 modality and let us furthermore add two axioms
% characterizing their relationship. We may then want to check
% whether or not box_k and box_b coincide, i.e., whether box_k
% includes box_b
% Refs : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Names : Problem 36 [Ben10b]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.60 v6.2.0, 0.71 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.60 v5.0.0
% Syntax : Number of formulae : 74 ( 31 unt; 34 typ; 31 def)
% Number of atoms : 127 ( 36 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 155 ( 4 ~; 4 |; 8 &; 131 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 175 ( 175 >; 0 *; 0 +; 0 <<)
% Number of symbols : 43 ( 41 usr; 9 con; 0-3 aty)
% Number of variables : 87 ( 52 ^; 29 !; 6 ?; 87 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v5.0.0 - Bugfix to LCL013^0.ax
%------------------------------------------------------------------------------
%----Include the definitions for quantified multimodal logic
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
thf(rk,type,
rk: $i > $i > $o ).
thf(rb,type,
rb: $i > $i > $o ).
thf(ax1,axiom,
mreflexive @ rk ).
thf(ax2,axiom,
mserial @ rb ).
thf(ax3,axiom,
mtransitive @ rk ).
thf(ax4,axiom,
mtransitive @ rb ).
thf(ax5,axiom,
meuclidean @ rk ).
thf(ax6,axiom,
meuclidean @ rb ).
thf(ax7,axiom,
( mvalid
@ ( mforall_prop
@ ^ [A: $i > $o] : ( mimplies @ ( mbox @ rk @ A ) @ ( mbox @ rb @ A ) ) ) ) ).
thf(ax8,axiom,
( mvalid
@ ( mforall_prop
@ ^ [A: $i > $o] : ( mimplies @ ( mbox @ rb @ A ) @ ( mbox @ rb @ ( mbox @ rk @ A ) ) ) ) ) ).
thf(conj,conjecture,
( mvalid
@ ( mforall_prop
@ ^ [A: $i > $o] : ( mimplies @ ( mbox @ rb @ A ) @ ( mbox @ rk @ A ) ) ) ) ).
%------------------------------------------------------------------------------