TPTP Problem File: LCL873^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL873^1 : TPTP v9.0.0. Bugfixed v5.0.0.
% Domain : Logical Calculi (Modal logic)
% Problem : Commutativity implies orthogonality in 2-D modal logic S5
% Version : [Ben10] axioms.
% English :
% Refs : [Seg73] Segerberg (1973), Two-Dimensional Modal Logic
% : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Source : [Ben10], problem 35
% Names : Problem 35 [Ben10b]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.0.0
% Syntax : Number of formulae : 72 ( 31 unt; 34 typ; 31 def)
% Number of atoms : 136 ( 36 equ; 0 cnn)
% Maximal formula atoms : 32 ( 3 avg)
% Number of connectives : 168 ( 4 ~; 4 |; 9 &; 143 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 176 ( 176 >; 0 *; 0 +; 0 <<)
% Number of symbols : 43 ( 41 usr; 9 con; 0-3 aty)
% Number of variables : 88 ( 53 ^; 29 !; 6 ?; 88 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Such a logic was discussed by Segerberg [Seg73] and the
% Bugfixes : v5.0.0 - Bugfix to LCL013^0.ax
% implication was only discovered later.
%------------------------------------------------------------------------------
%----Include the definitions for quantified multimodal logic
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
thf(ra,type,
ra: $i > $i > $o ).
thf(rb,type,
rb: $i > $i > $o ).
thf(ax1,axiom,
mreflexive @ ra ).
thf(ax2,axiom,
mreflexive @ rb ).
thf(ax3,axiom,
mtransitive @ ra ).
thf(ax4,axiom,
mtransitive @ rb ).
thf(ax5,axiom,
meuclidean @ ra ).
thf(ax6,axiom,
meuclidean @ rb ).
thf(conj,conjecture,
( ( mvalid
@ ( mforall_prop
@ ^ [A: $i > $o] :
( mforall_prop
@ ^ [B: $i > $o] : ( mimplies @ ( mbox @ ra @ ( mor @ ( mbox @ ra @ A ) @ ( mbox @ rb @ B ) ) ) @ ( mor @ ( mbox @ ra @ A ) @ ( mbox @ ra @ B ) ) ) ) ) )
& ( mvalid
@ ( mforall_prop
@ ^ [A: $i > $o] :
( mforall_prop
@ ^ [B: $i > $o] : ( mimplies @ ( mbox @ rb @ ( mor @ ( mbox @ ra @ A ) @ ( mbox @ rb @ B ) ) ) @ ( mor @ ( mbox @ rb @ A ) @ ( mbox @ rb @ B ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------