TPTP Problem File: LCL872^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL872^1 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Logical Calculi (Modal logic)
% Problem : Correspondence between box and diamond and a confluence property
% Version : [Ben10] axioms.
% English :
% Refs : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Names : Problem 34 [Ben10b]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.22 v7.3.0, 0.33 v7.2.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.80 v5.2.0
% Syntax : Number of formulae : 70 ( 32 unt; 37 typ; 32 def)
% Number of atoms : 110 ( 37 equ; 0 cnn)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 151 ( 4 ~; 4 |; 10 &; 123 @)
% ( 1 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 197 ( 197 >; 0 *; 0 +; 0 <<)
% Number of symbols : 43 ( 41 usr; 6 con; 0-4 aty)
% Number of variables : 93 ( 54 ^; 32 !; 7 ?; 93 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v5.0.0 - Bugfix to LCL013^0.ax
% : v5.2.0 - Added missing types
%------------------------------------------------------------------------------
%----Include the definitions for quantified multimodal logic
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
%----Constants for accesibility relations
thf(i,type,
i: $i > $i > $o ).
thf(j,type,
j: $i > $i > $o ).
thf(k,type,
k: $i > $i > $o ).
thf(l,type,
l: $i > $i > $o ).
%----Definition of confluence property
thf(confluences_type,type,
confluence: ( $i > $i > $o ) > ( $i > $i > $o ) > ( $i > $i > $o ) > ( $i > $i > $o ) > $o ).
thf(confluence,definition,
( confluence
= ( ^ [I: $i > $i > $o,J: $i > $i > $o,K: $i > $i > $o,L: $i > $i > $o] :
! [A: $i,B: $i,C: $i] :
( ( ( I @ A @ B )
& ( K @ A @ C ) )
=> ? [D: $i] :
( ( J @ B @ D )
& ( L @ C @ D ) ) ) ) ) ).
%----Correspondence between axiom and confluence property
thf(conj,conjecture,
( ( mvalid
@ ( mforall_prop
@ ^ [P: $i > $o] : ( mimplies @ ( mdia @ i @ ( mbox @ j @ P ) ) @ ( mbox @ k @ ( mdia @ l @ P ) ) ) ) )
<=> ( confluence @ i @ j @ k @ l ) ) ).
%------------------------------------------------------------------------------