TPTP Problem File: LCL863^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL863^1 : TPTP v9.0.0. Bugfixed v5.0.0.
% Domain : Logical Calculi (Modal logic)
% Problem : Modal logic S5(=M5) coincides with D4B
% Version : [Ben10] axioms.
% English :
% Refs : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Names : Problem 25 [Ben10b]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.29 v7.4.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.0.0
% Syntax : Number of formulae : 64 ( 31 unt; 32 typ; 31 def)
% Number of atoms : 97 ( 36 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 132 ( 4 ~; 4 |; 11 &; 104 @)
% ( 1 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 170 ( 170 >; 0 *; 0 +; 0 <<)
% Number of symbols : 38 ( 36 usr; 6 con; 0-3 aty)
% Number of variables : 85 ( 49 ^; 30 !; 6 ?; 85 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v5.0.0 - Bugfix to LCL013^0.ax
%------------------------------------------------------------------------------
%----Include the definitions for quantified multimodal logic
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
thf(conj,conjecture,
! [R: $i > $i > $o] :
( ( ( mreflexive @ R )
& ( meuclidean @ R ) )
<=> ( ( mserial @ R )
& ( mtransitive @ R )
& ( msymmetric @ R ) ) ) ).
%------------------------------------------------------------------------------