TPTP Problem File: LCL692^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL692^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Logical Calculi
% Problem : Prove transitivity in the CS4 translation
% Version : [AM+01] axioms.
% English :
% Refs : [AM+01] Alechina et al. (2001), Categorical and Kripke Semanti
% : [Gar09] Garg (2009), Email to Geoff Sutcliffe
% Source : [Gar09]
% Names :
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.90 v8.2.0, 0.92 v8.1.0, 0.91 v7.5.0, 0.86 v7.4.0, 0.78 v7.2.0, 0.75 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0, 1.00 v3.7.0
% Syntax : Number of formulae : 61 ( 24 unt; 31 typ; 24 def)
% Number of atoms : 113 ( 24 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 100 ( 3 ~; 1 |; 2 &; 93 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 129 ( 129 >; 0 *; 0 +; 0 <<)
% Number of symbols : 37 ( 34 usr; 7 con; 0-3 aty)
% Number of variables : 52 ( 38 ^; 10 !; 4 ?; 52 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of multi-modal logic
include('Axioms/LCL008^0.ax').
%----Include axioms translating constructive S4 (CS4) to bimodal classical
%----S4 (BS4)
include('Axioms/LCL009^0.ax').
%------------------------------------------------------------------------------
thf(cs4_trans,conjecture,
! [A: $i > $o] : ( cs4_valid @ ( cs4_impl @ ( cs4_box @ ( cs4_atom @ A ) ) @ ( cs4_box @ ( cs4_box @ ( cs4_atom @ A ) ) ) ) ) ).
%------------------------------------------------------------------------------