TPTP Problem File: LCL618^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL618^1 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Logical Calculi
% Problem : Axiom GL implies Axiom K4 in K
% Version : [Ben08] axioms.
% English :
% Refs : [Fit07] Fitting (2007), Modal Proof Theory
% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : Fitting-HB-7b [Ben08]
% Status : Theorem
% Rating : 0.88 v9.0.0, 1.00 v7.3.0
% Syntax : Number of formulae : 38 ( 15 unt; 21 typ; 15 def)
% Number of atoms : 56 ( 15 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 57 ( 3 ~; 1 |; 2 &; 50 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 83 ( 83 >; 0 *; 0 +; 0 <<)
% Number of symbols : 26 ( 23 usr; 6 con; 0-3 aty)
% Number of variables : 38 ( 28 ^; 6 !; 4 ?; 38 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v7.3.0 - Made relation R a constant.
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
%------------------------------------------------------------------------------
%----Axioms
thf(r_type,type,
r: $i > $i > $o ).
thf(gl,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ ( mimpl @ ( mbox @ r @ X ) @ X ) ) @ ( mbox @ r @ X ) ) ) ).
%----Conjecture
thf(k4,conjecture,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ X ) @ ( mbox @ r @ ( mbox @ r @ ( mbox @ r @ X ) ) ) ) ) ).
%------------------------------------------------------------------------------