TPTP Problem File: LCL600^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL600^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Logical Calculi
% Problem : Is axiom 4 equivalent to transitivity of R in K?
% Version : [BP09] axioms.
% English :
% Refs : [BP09] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [BP09]
% Names : K-4-e [BP09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 78 ( 36 unt; 41 typ; 36 def)
% Number of atoms : 94 ( 40 equ; 0 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 134 ( 6 ~; 3 |; 14 &; 100 @)
% ( 2 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 224 ( 224 >; 0 *; 0 +; 0 <<)
% Number of symbols : 47 ( 44 usr; 7 con; 0-4 aty)
% Number of variables : 110 ( 76 ^; 24 !; 10 ?; 110 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
%----Conjecture
thf(thm,conjecture,
! [R: $i > $i > $o] :
( ! [A: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ R @ A ) @ ( mbox @ R @ ( mbox @ R @ A ) ) ) )
<=> ( transitive @ R ) ) ).
%------------------------------------------------------------------------------