TPTP Problem File: LCL594^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL594^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Logical Calculi
% Problem : Relation for all propositions making T valid in K
% Version : [BP09] axioms.
% English : Is there a relation R such that for all modal propositions A,
% axiom T is valid in K
% Refs : [BP09] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [BP09]
% Names : K-T-b [BP09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.46 v8.1.0, 0.45 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 36 ( 15 unt; 20 typ; 15 def)
% Number of atoms : 40 ( 15 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 40 ( 3 ~; 1 |; 2 &; 33 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 82 ( 82 >; 0 *; 0 +; 0 <<)
% Number of symbols : 25 ( 22 usr; 6 con; 0-3 aty)
% Number of variables : 38 ( 28 ^; 5 !; 5 ?; 38 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
%------------------------------------------------------------------------------
%----Conjecture
thf(thm,conjecture,
? [R: $i > $i > $o] :
! [A: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ R @ A ) @ A ) ) ).
%------------------------------------------------------------------------------