TPTP Problem File: LCL570+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL570+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Logic Calculi (Propositional modal)
% Problem : Prove axiom K from the S1-0M10 axiomatization of S5
% Version : [Zem73] axioms.
% English :
% Refs : [Zem73] Zeman (1973), Modal Logic, the Lewis-Modal systems
% : [Hal] Halleck (URL), John Halleck's Logic Systems
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.97 v9.0.0, 0.94 v7.5.0, 0.97 v7.1.0, 0.96 v7.0.0, 1.00 v6.4.0, 0.96 v6.1.0, 0.97 v6.0.0, 1.00 v3.4.0, 0.95 v3.3.0
% Syntax : Number of formulae : 52 ( 20 unt; 0 def)
% Number of atoms : 90 ( 10 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 38 ( 0 ~; 0 |; 2 &)
% ( 23 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 36 ( 35 usr; 34 prp; 0-2 aty)
% Number of functors : 9 ( 9 usr; 0 con; 1-2 aty)
% Number of variables : 55 ( 55 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of propositional logic
include('Axioms/LCL006+1.ax').
%----Include axioms of modal logic
include('Axioms/LCL007+0.ax').
include('Axioms/LCL007+1.ax').
%----Include axioms for S1-0
include('Axioms/LCL007+4.ax').
%----Include axioms for M10
include('Axioms/LCL007+6.ax').
%------------------------------------------------------------------------------
%----Operator definitions to reduce everything to and & not
fof(hilbert_op_or,axiom,
op_or ).
fof(hilbert_op_implies_and,axiom,
op_implies_and ).
fof(hilbert_op_equiv,axiom,
op_equiv ).
%----Admissible but not required for completeness. With it much more can
%----be done.
fof(substitution_of_equivalents,axiom,
substitution_of_equivalents ).
%----Conjecture
fof(km5_axiom_K,conjecture,
axiom_K ).
%------------------------------------------------------------------------------