TPTP Problem File: LCL568+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL568+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Logic Calculi (Propositional modal)
% Problem : Prove axiom 4 from the S1-0M6S3M9B axiomatization of S5
% Version : [Zem73] axioms.
% English :
% Refs : [Zem73] Zeman (1973), Modal Logic, the Lewis-Modal systems
% : [Hal] Halleck (URL), John Halleck's Logic Systems
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.73 v9.0.0, 0.75 v7.5.0, 0.81 v7.4.0, 0.83 v7.3.0, 0.79 v7.1.0, 0.83 v7.0.0, 0.90 v6.4.0, 0.88 v6.3.0, 0.83 v6.2.0, 0.88 v6.1.0, 0.90 v6.0.0, 0.91 v5.5.0, 0.93 v5.2.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.83 v3.7.0, 0.85 v3.5.0, 0.84 v3.3.0
% Syntax : Number of formulae : 55 ( 23 unt; 0 def)
% Number of atoms : 93 ( 10 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 38 ( 0 ~; 0 |; 2 &)
% ( 23 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 37 ( 36 usr; 35 prp; 0-2 aty)
% Number of functors : 9 ( 9 usr; 0 con; 1-2 aty)
% Number of variables : 55 ( 55 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of propositional logic
include('Axioms/LCL006+1.ax').
%----Include axioms of modal logic
include('Axioms/LCL007+0.ax').
include('Axioms/LCL007+1.ax').
%----Include axioms for S1-0
include('Axioms/LCL007+4.ax').
%----Include axioms for M6S3M9B
include('Axioms/LCL007+5.ax').
%------------------------------------------------------------------------------
%----Operator definitions to reduce everything to and & not
fof(hilbert_op_or,axiom,
op_or ).
fof(hilbert_op_implies_and,axiom,
op_implies_and ).
fof(hilbert_op_equiv,axiom,
op_equiv ).
%----Admissible but not required for completeness. With it much more can
%----be done.
fof(substitution_of_equivalents,axiom,
substitution_of_equivalents ).
%----Conjecture
fof(km4b_axiom_4,conjecture,
axiom_4 ).
%------------------------------------------------------------------------------