TPTP Problem File: LCL535+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL535+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Logic Calculi (Propositional modal)
% Problem : Prove axiom m9 from KM5 axiomatization of S5
% Version : [HC96] axioms.
% English :
% Refs : [HC96] Hughes & Cresswell (1996), A New Introduction to Modal
% : [Hal] Halleck (URL), John Halleck's Logic Systems
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.53 v8.1.0, 0.56 v7.4.0, 0.57 v7.3.0, 0.66 v7.2.0, 0.69 v7.1.0, 0.70 v7.0.0, 0.67 v6.4.0, 0.69 v6.3.0, 0.67 v6.2.0, 0.64 v6.1.0, 0.70 v6.0.0, 0.65 v5.5.0, 0.74 v5.4.0, 0.75 v5.3.0, 0.78 v5.2.0, 0.65 v5.1.0, 0.71 v4.1.0, 0.74 v4.0.0, 0.71 v3.7.0, 0.75 v3.5.0, 0.68 v3.4.0, 0.79 v3.3.0
% Syntax : Number of formulae : 88 ( 30 unt; 0 def)
% Number of atoms : 155 ( 11 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 67 ( 0 ~; 0 |; 3 &)
% ( 49 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 61 ( 60 usr; 59 prp; 0-2 aty)
% Number of functors : 9 ( 9 usr; 0 con; 1-2 aty)
% Number of variables : 110 ( 110 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include Hilbert's axiomatization of propositional logic
include('Axioms/LCL006+0.ax').
include('Axioms/LCL006+1.ax').
include('Axioms/LCL006+2.ax').
%----Include axioms of modal logic
include('Axioms/LCL007+0.ax').
include('Axioms/LCL007+1.ax').
%----Include axioms for KM5
include('Axioms/LCL007+2.ax').
%------------------------------------------------------------------------------
%----Modal definitions
fof(s1_0_op_possibly,axiom,
op_possibly ).
fof(s1_0_op_or,axiom,
op_or ).
fof(s1_0_op_implies,axiom,
op_implies ).
fof(s1_0_op_strict_implies,axiom,
op_strict_implies ).
fof(s1_0_op_equiv,axiom,
op_equiv ).
fof(s1_0_op_strict_equiv,axiom,
op_strict_equiv ).
%----Conjecture
fof(s1_0_m6s3m9b_axiom_m9,conjecture,
axiom_m9 ).
%------------------------------------------------------------------------------