TPTP Problem File: LCL416-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL416-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Prove reflexivity from formula XCB by condensed detachment
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.41 v8.2.0, 0.46 v8.1.0, 0.50 v7.5.0, 0.54 v7.4.0, 0.57 v7.3.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-4 aty)
% Number of variables : 8 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LCL416-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(condensed_detachment,axiom,
ifeq(is_a_theorem(equivalent(A,B)),true,ifeq(is_a_theorem(A),true,is_a_theorem(B),true),true) = true ).
cnf(xcb,axiom,
is_a_theorem(equivalent(A,equivalent(equivalent(equivalent(A,B),equivalent(C,B)),C))) = true ).
cnf(prove_reflexivity,negated_conjecture,
is_a_theorem(equivalent(a,a)) != true ).
%------------------------------------------------------------------------------