TPTP Problem File: LCL414^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL414^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Logic Calculi
% Problem : Peter Andrews Problem THM147
% Version : [Ben12] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GLC414+1 [Ben12]
% Status : Theorem
% Rating : 1.00 v8.2.0, 0.92 v8.1.0, 1.00 v5.5.0
% Syntax : Number of formulae : 78 ( 35 unt; 39 typ; 32 def)
% Number of atoms : 156 ( 36 equ; 0 cnn)
% Maximal formula atoms : 48 ( 4 avg)
% Number of connectives : 235 ( 5 ~; 5 |; 9 &; 206 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 185 ( 185 >; 0 *; 0 +; 0 <<)
% Number of symbols : 48 ( 46 usr; 9 con; 0-3 aty)
% Number of variables : 105 ( 59 ^; 39 !; 7 ?; 105 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of LCL414+1
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(a_truth_type,type,
a_truth: mu > $i > $o ).
thf(not_type,type,
not: mu > mu ).
thf(existence_of_not_ax,axiom,
! [V: $i,V1: mu] : ( exists_in_world @ ( not @ V1 ) @ V ) ).
thf(implies_type,type,
implies: mu > mu > mu ).
thf(existence_of_implies_ax,axiom,
! [V: $i,V2: mu,V1: mu] : ( exists_in_world @ ( implies @ V2 @ V1 ) @ V ) ).
thf(thm147,conjecture,
( mvalid
@ ( mbox_s4
@ ( mnot
@ ( mand
@ ( mbox_s4
@ ( mforall_ind
@ ^ [P: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [Q: mu] : ( mor @ ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( a_truth @ ( implies @ P @ Q ) ) ) ) ) @ ( mor @ ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( a_truth @ P ) ) ) ) @ ( mbox_s4 @ ( a_truth @ Q ) ) ) ) ) ) ) )
@ ( mand
@ ( mbox_s4
@ ( mforall_ind
@ ^ [P: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [Q: mu] : ( mbox_s4 @ ( a_truth @ ( implies @ P @ ( implies @ Q @ P ) ) ) ) ) ) ) )
@ ( mand
@ ( mbox_s4
@ ( mforall_ind
@ ^ [P: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [Q: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [R: mu] : ( mbox_s4 @ ( a_truth @ ( implies @ ( implies @ P @ ( implies @ Q @ R ) ) @ ( implies @ ( implies @ P @ Q ) @ ( implies @ P @ R ) ) ) ) ) ) ) ) ) ) )
@ ( mand
@ ( mbox_s4
@ ( mforall_ind
@ ^ [P: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [Q: mu] : ( mbox_s4 @ ( a_truth @ ( implies @ ( implies @ ( not @ P ) @ ( not @ Q ) ) @ ( implies @ Q @ P ) ) ) ) ) ) ) )
@ ( mexists_ind
@ ^ [A: mu] : ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( a_truth @ ( implies @ A @ A ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------