TPTP Problem File: LCL390-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL390-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : CN-53 depends on the Lukasiewicz system
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.91 v9.0.0, 0.86 v8.2.0, 0.92 v8.1.0, 0.85 v7.5.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-4 aty)
% Number of variables : 11 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LCL390-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(condensed_detachment,axiom,
ifeq(is_a_theorem(implies(X,Y)),true,ifeq(is_a_theorem(X),true,is_a_theorem(Y),true),true) = true ).
cnf(cn_1,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) = true ).
cnf(cn_2,axiom,
is_a_theorem(implies(implies(not(X),X),X)) = true ).
cnf(cn_3,axiom,
is_a_theorem(implies(X,implies(not(X),Y))) = true ).
cnf(prove_cn_53,negated_conjecture,
is_a_theorem(implies(implies(not(x),y),implies(implies(x,y),y))) != true ).
%------------------------------------------------------------------------------