TPTP Problem File: LCL265-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL265-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Principia Mathematica 4.13
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.64 v9.0.0, 0.59 v8.2.0, 0.58 v8.1.0, 0.75 v7.4.0, 0.78 v7.3.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 1 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 2 con; 0-4 aty)
% Number of variables : 23 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LCL265-3 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(axiom_1_2,axiom,
axiom(implies(or(A,A),A)) = true ).
cnf(axiom_1_3,axiom,
axiom(implies(A,or(B,A))) = true ).
cnf(axiom_1_4,axiom,
axiom(implies(or(A,B),or(B,A))) = true ).
cnf(axiom_1_5,axiom,
axiom(implies(or(A,or(B,C)),or(B,or(A,C)))) = true ).
cnf(axiom_1_6,axiom,
axiom(implies(implies(A,B),implies(or(C,A),or(C,B)))) = true ).
cnf(implies_definition,axiom,
implies(X,Y) = or(not(X),Y) ).
cnf(rule_1,axiom,
ifeq(axiom(X),true,theorem(X),true) = true ).
cnf(rule_2,axiom,
ifeq(theorem(implies(Y,X)),true,ifeq(theorem(Y),true,theorem(X),true),true) = true ).
cnf(and_defn,axiom,
and(P,Q) = not(or(not(P),not(Q))) ).
cnf(equivalent_defn,axiom,
equivalent(P,Q) = and(implies(P,Q),implies(Q,P)) ).
cnf(prove_this,negated_conjecture,
theorem(equivalent(p,not(not(p)))) != true ).
%------------------------------------------------------------------------------