TPTP Problem File: LCL148-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL148-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : A theorem in the lattice structure of Wajsberg algebras
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.95 v8.2.0, 0.96 v8.1.0, 1.00 v7.5.0, 0.92 v7.4.0, 0.91 v7.3.0
% Syntax : Number of clauses : 11 ( 11 unt; 0 nHn; 1 RR)
% Number of literals : 11 ( 11 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 5 con; 0-4 aty)
% Number of variables : 22 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LCL148-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(wajsberg_1,axiom,
implies(truth,X) = X ).
cnf(wajsberg_2,axiom,
implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z))) = truth ).
cnf(wajsberg_3,axiom,
implies(implies(X,Y),Y) = implies(implies(Y,X),X) ).
cnf(wajsberg_4,axiom,
implies(implies(not(X),not(Y)),implies(Y,X)) = truth ).
cnf(big_V_definition,axiom,
big_V(X,Y) = implies(implies(X,Y),Y) ).
cnf(big_hat_definition,axiom,
big_hat(X,Y) = not(big_V(not(X),not(Y))) ).
cnf(partial_order_definition1,axiom,
ifeq(ordered(X,Y),true,implies(X,Y),truth) = truth ).
cnf(partial_order_definition2,axiom,
ifeq2(implies(X,Y),truth,ordered(X,Y),true) = true ).
cnf(prove_wajsberg_theorem,negated_conjecture,
implies(x,big_hat(y,z)) != big_hat(implies(x,y),implies(x,z)) ).
%------------------------------------------------------------------------------