TPTP Problem File: LCL109-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL109-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Many valued sentential)
% Problem : MV-4 depends on the Merideth system
% Version : [Ove90] axioms.
% Theorem formulation : Wajsberg algebra formulation.
% English : An axiomatisation of the many valued sentential calculus
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Wajsberg provided
% a different axiomatisation. Show that MV-4 depends on the
% Wajsberg system.
% Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [LM92] Lusk & McCune (1992), Experiments with ROO, a Parallel
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
% Source : [Ove90]
% Names : CADE-11 Competition Eq-5 [Ove90]
% : Luka-5 [LM92]
% : MV4 [LW92]
% : THEOREM EQ-5 [LM93]
% : PROBLEM 5 [Zha93]
% Status : Unsatisfiable
% Rating : 0.32 v9.0.0, 0.36 v8.2.0, 0.46 v8.1.0, 0.55 v7.5.0, 0.54 v7.4.0, 0.61 v7.3.0, 0.53 v7.1.0, 0.44 v7.0.0, 0.37 v6.4.0, 0.47 v6.2.0, 0.57 v6.1.0, 0.62 v6.0.0, 0.71 v5.5.0, 0.68 v5.4.0, 0.53 v5.3.0, 0.50 v5.1.0, 0.53 v5.0.0, 0.50 v4.1.0, 0.45 v4.0.1, 0.50 v4.0.0, 0.38 v3.7.0, 0.22 v3.4.0, 0.25 v3.3.0, 0.29 v3.1.0, 0.22 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.33 v2.2.1, 0.56 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include Wajsberg algebra axioms
include('Axioms/LCL001-0.ax').
%--------------------------------------------------------------------------
cnf(prove_wajsberg_mv_4,negated_conjecture,
implies(implies(implies(a,b),implies(b,a)),implies(b,a)) != truth ).
%--------------------------------------------------------------------------