TPTP Problem File: LCL109-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL109-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : MV-4 depends on the Merideth system
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.27 v9.0.0, 0.32 v8.2.0, 0.25 v8.1.0, 0.30 v7.5.0
% Syntax : Number of clauses : 16 ( 16 unt; 0 nHn; 1 RR)
% Number of literals : 16 ( 16 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-4 aty)
% Number of variables : 30 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LCL109-3 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(wajsberg_1,axiom,
implies(truth,X) = X ).
cnf(wajsberg_2,axiom,
implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z))) = truth ).
cnf(wajsberg_3,axiom,
implies(implies(X,Y),Y) = implies(implies(Y,X),X) ).
cnf(wajsberg_4,axiom,
implies(implies(not(X),not(Y)),implies(Y,X)) = truth ).
cnf(lemma_1,axiom,
implies(X,X) = truth ).
cnf(lemma_2,axiom,
ifeq(implies(X,Y),implies(Y,X),X,Y) = Y ).
cnf(lemma_3,axiom,
implies(X,truth) = truth ).
cnf(lemma_4,axiom,
implies(X,implies(Y,X)) = truth ).
cnf(lemma_5,axiom,
ifeq(implies(X,Y),implies(Y,Z),implies(X,Z),truth) = truth ).
cnf(lemma_6,axiom,
implies(implies(X,Y),implies(implies(Z,X),implies(Z,Y))) = truth ).
cnf(lemma_7,axiom,
implies(X,implies(Y,Z)) = implies(Y,implies(X,Z)) ).
cnf(lemma_8,axiom,
implies(X,not(truth)) = not(X) ).
cnf(lemma_9,axiom,
not(not(X)) = X ).
cnf(lemma_10,axiom,
implies(not(X),not(Y)) = implies(Y,X) ).
cnf(prove_wajsberg_mv_4,negated_conjecture,
implies(implies(implies(a,b),implies(b,a)),implies(b,a)) != truth ).
%------------------------------------------------------------------------------