TPTP Problem File: LAT399-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT399-1 : TPTP v9.0.0. Released v8.1.0.
% Domain : Lattice Theory (Relational lattices)
% Problem : Appendix A, Theorem 3.4, clause 7
% Version : [LMH16] axioms.
% English :
% Refs : [LMH16] Litak et al. (2016), Relational Lattices: From Databas
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names : rellat_appendixa.p [Sma21]
% Status : Unsatisfiable
% Rating : 0.55 v9.0.0, 0.64 v8.2.0, 0.50 v8.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 23 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(commutativity,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(associativity,axiom,
meet(X,meet(Y,Z)) = meet(meet(X,Y),Z) ).
cnf(commutativity_001,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_002,axiom,
join(X,join(Y,Z)) = join(join(X,Y),Z) ).
cnf(absorption,axiom,
join(X,meet(X,Y)) = X ).
cnf(absorption_003,axiom,
meet(X,join(X,Y)) = X ).
cnf(definition_of_upme,axiom,
upme(X,Y,Z) = meet(X,join(Y,Z)) ).
cnf(definition_of_lome,axiom,
lome(X,Y,X1) = join(meet(X,Y),meet(X,X1)) ).
cnf(conjecture,negated_conjecture,
join(upme(meet(a,X1),Y1,W),meet(Y1,W)) = meet(join(meet(meet(a,X1),Y1),W),join(meet(meet(a,X1),W),Y1)) ).
cnf(conjecture_1,negated_conjecture,
upme(meet(a,z1),z2,z3) != lome(meet(a,z1),z2,z3) ).
%------------------------------------------------------------------------------