TPTP Problem File: LAT393-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT393-2 : TPTP v9.0.0. Released v5.4.0.
% Domain : Lattice Theory
% Problem : Ortholattices in terms of Sheffer stroke: associativity
% Version : Especial
% English :
% Refs : [Sta11] Stanovsky (2011), Email to Geoff Sutcliffe
% Source : [Sta11]
% Names : lat2 [Sta11]
% Status : Unsatisfiable
% Rating : 0.73 v9.0.0, 0.77 v8.2.0, 0.71 v8.1.0, 0.70 v7.5.0, 0.83 v7.4.0, 0.91 v7.3.0, 0.79 v7.1.0, 0.78 v7.0.0, 0.84 v6.4.0, 0.89 v6.3.0, 0.88 v6.2.0, 0.86 v6.1.0, 0.88 v6.0.0, 0.90 v5.5.0, 0.89 v5.4.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(sos,axiom,
f(f(f(f(A,B),f(B,C)),D),f(B,f(f(B,f(f(A,A),A)),C))) = B ).
cnf(goals,negated_conjecture,
f(x0,f(f(x1,x2),f(x1,x2))) != f(x1,f(f(x0,x2),f(x0,x2))) ).
%------------------------------------------------------------------------------