TPTP Problem File: LAT393-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT393-1 : TPTP v9.0.0. Released v5.4.0.
% Domain : Lattice Theory
% Problem : Ortholattices in terms of Sheffer stroke + ops: associativity
% Version : Especial
% English :
% Refs : [Sta11] Stanovsky (2011), Email to Geoff Sutcliffe
% Source : [Sta11]
% Names : lat1 [Sta11]
% Status : Unsatisfiable
% Rating : 0.64 v8.2.0, 0.71 v8.1.0, 0.80 v7.5.0, 0.75 v7.4.0, 0.83 v7.3.0, 0.68 v7.1.0, 0.72 v7.0.0, 0.79 v6.3.0, 0.76 v6.2.0, 0.71 v6.1.0, 0.75 v6.0.0, 0.81 v5.5.0, 0.84 v5.4.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(sos,axiom,
f(f(f(f(A,B),f(B,C)),D),f(B,f(f(B,f(f(A,A),A)),C))) = B ).
cnf(sos_001,axiom,
or(A,B) = f(f(A,A),f(B,B)) ).
cnf(sos_002,axiom,
and(A,B) = f(f(A,B),f(A,B)) ).
cnf(sos_003,axiom,
neg(A) = f(A,A) ).
cnf(goals,negated_conjecture,
f(x0,f(f(x1,x2),f(x1,x2))) != f(x1,f(f(x0,x2),f(x0,x2))) ).
%------------------------------------------------------------------------------