TPTP Problem File: LAT392-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT392-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Lattice Theory
% Problem : Short axiom for lattice theory, part 4
% Version : Especial.
% English :
% Refs : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names :
% Status : Unsatisfiable
% Rating : 0.41 v8.2.0, 0.50 v8.1.0, 0.55 v7.5.0, 0.42 v7.4.0, 0.48 v7.3.0, 0.42 v7.1.0, 0.39 v7.0.0, 0.42 v6.3.0, 0.41 v6.2.0, 0.43 v6.1.0, 0.62 v6.0.0, 0.71 v5.5.0, 0.68 v5.4.0, 0.67 v5.2.0, 0.64 v5.1.0, 0.67 v5.0.0, 0.64 v4.0.1, 0.71 v4.0.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 11 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(sos,axiom,
mult(plus(mult(plus(A,B),plus(B,mult(A,B))),C),plus(mult(plus(A,mult(mult(plus(D,B),plus(B,E)),B)),plus(mult(plus(B,plus(plus(mult(D,mult(B,E)),mult(F,B)),B)),plus(V6,mult(B,plus(plus(mult(B,V7),mult(F,B)),B)))),mult(A,mult(mult(plus(D,B),plus(B,E)),B)))),mult(mult(plus(A,B),plus(B,mult(A,B))),C))) = B ).
cnf(goals,negated_conjecture,
plus(plus(mult(a,b),mult(b,c)),b) != b ).
%------------------------------------------------------------------------------