TPTP Problem File: LAT385+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT385+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Lattice Theory
% Problem : Tarski-Knaster fixed point theorem 03_01_02, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% : [VL+08] Verchinine et al. (2008), On Correctness of Mathematic
% Source : [Pas08]
% Names : tarski_03_01_02.00 [Pas08]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.40 v7.4.0, 0.00 v7.3.0, 0.33 v7.0.0, 0.00 v6.4.0, 0.33 v6.2.0, 0.27 v6.1.0, 0.36 v6.0.0, 0.54 v5.5.0, 0.12 v5.4.0, 0.29 v5.3.0, 0.57 v5.2.0, 0.50 v5.0.0, 0.57 v4.1.0, 0.80 v4.0.0
% Syntax : Number of formulae : 28 ( 4 unt; 10 def)
% Number of atoms : 105 ( 8 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 78 ( 1 ~; 0 |; 24 &)
% ( 10 <=>; 43 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 17 ( 15 usr; 1 prp; 0-3 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-3 aty)
% Number of variables : 58 ( 54 !; 4 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mSetSort,axiom,
! [W0] :
( aSet0(W0)
=> $true ) ).
fof(mElmSort,axiom,
! [W0] :
( aElement0(W0)
=> $true ) ).
fof(mEOfElem,axiom,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aElementOf0(W1,W0)
=> aElement0(W1) ) ) ).
fof(mDefEmpty,definition,
! [W0] :
( aSet0(W0)
=> ( isEmpty0(W0)
<=> ~ ? [W1] : aElementOf0(W1,W0) ) ) ).
fof(mDefSub,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
<=> ( aSet0(W1)
& ! [W2] :
( aElementOf0(W2,W1)
=> aElementOf0(W2,W0) ) ) ) ) ).
fof(mLessRel,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> ( sdtlseqdt0(W0,W1)
=> $true ) ) ).
fof(mARefl,axiom,
! [W0] :
( aElement0(W0)
=> sdtlseqdt0(W0,W0) ) ).
fof(mASymm,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> ( ( sdtlseqdt0(W0,W1)
& sdtlseqdt0(W1,W0) )
=> W0 = W1 ) ) ).
fof(mTrans,axiom,
! [W0,W1,W2] :
( ( aElement0(W0)
& aElement0(W1)
& aElement0(W2) )
=> ( ( sdtlseqdt0(W0,W1)
& sdtlseqdt0(W1,W2) )
=> sdtlseqdt0(W0,W2) ) ) ).
fof(mDefLB,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aLowerBoundOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& ! [W3] :
( aElementOf0(W3,W1)
=> sdtlseqdt0(W2,W3) ) ) ) ) ) ).
fof(mDefUB,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aUpperBoundOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& ! [W3] :
( aElementOf0(W3,W1)
=> sdtlseqdt0(W3,W2) ) ) ) ) ) ).
fof(mDefInf,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aInfimumOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& aLowerBoundOfIn0(W2,W1,W0)
& ! [W3] :
( aLowerBoundOfIn0(W3,W1,W0)
=> sdtlseqdt0(W3,W2) ) ) ) ) ) ).
fof(mDefSup,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aSupremumOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& aUpperBoundOfIn0(W2,W1,W0)
& ! [W3] :
( aUpperBoundOfIn0(W3,W1,W0)
=> sdtlseqdt0(W2,W3) ) ) ) ) ) ).
fof(mSupUn,axiom,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2,W3] :
( ( aSupremumOfIn0(W2,W1,W0)
& aSupremumOfIn0(W3,W1,W0) )
=> W2 = W3 ) ) ) ).
fof(mInfUn,axiom,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2,W3] :
( ( aInfimumOfIn0(W2,W1,W0)
& aInfimumOfIn0(W3,W1,W0) )
=> W2 = W3 ) ) ) ).
fof(mDefCLat,definition,
! [W0] :
( aCompleteLattice0(W0)
<=> ( aSet0(W0)
& ! [W1] :
( aSubsetOf0(W1,W0)
=> ? [W2] :
( aInfimumOfIn0(W2,W1,W0)
& ? [W3] : aSupremumOfIn0(W3,W1,W0) ) ) ) ) ).
fof(mConMap,axiom,
! [W0] :
( aFunction0(W0)
=> $true ) ).
fof(mDomSort,axiom,
! [W0] :
( aFunction0(W0)
=> aSet0(szDzozmdt0(W0)) ) ).
fof(mRanSort,axiom,
! [W0] :
( aFunction0(W0)
=> aSet0(szRzazndt0(W0)) ) ).
fof(mDefDom,definition,
! [W0,W1] :
( ( aFunction0(W0)
& aSet0(W1) )
=> ( isOn0(W0,W1)
<=> ( szDzozmdt0(W0) = szRzazndt0(W0)
& szRzazndt0(W0) = W1 ) ) ) ).
fof(mImgSort,axiom,
! [W0] :
( aFunction0(W0)
=> ! [W1] :
( aElementOf0(W1,szDzozmdt0(W0))
=> aElementOf0(sdtlpdtrp0(W0,W1),szRzazndt0(W0)) ) ) ).
fof(mDefFix,definition,
! [W0] :
( aFunction0(W0)
=> ! [W1] :
( aFixedPointOf0(W1,W0)
<=> ( aElementOf0(W1,szDzozmdt0(W0))
& sdtlpdtrp0(W0,W1) = W1 ) ) ) ).
fof(mDefMonot,definition,
! [W0] :
( aFunction0(W0)
=> ( isMonotone0(W0)
<=> ! [W1,W2] :
( ( aElementOf0(W1,szDzozmdt0(W0))
& aElementOf0(W2,szDzozmdt0(W0)) )
=> ( sdtlseqdt0(W1,W2)
=> sdtlseqdt0(sdtlpdtrp0(W0,W1),sdtlpdtrp0(W0,W2)) ) ) ) ) ).
fof(m__1123,hypothesis,
( aCompleteLattice0(xU)
& aFunction0(xf)
& isMonotone0(xf)
& isOn0(xf,xU) ) ).
fof(m__1144,hypothesis,
xS = cS1142(xf) ).
fof(m__1173,hypothesis,
aSubsetOf0(xT,xS) ).
fof(m__1244,hypothesis,
xP = cS1241(xU,xf,xT) ).
fof(m__,conjecture,
? [W0] : aInfimumOfIn0(W0,xP,xU) ).
%------------------------------------------------------------------------------