TPTP Problem File: LAT360+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT360+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Duality Based on Galois Connection - Part I T17
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek (2001), Duality Based on the Galois Connectio
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t17_waybel34 [Urb08]
% Status : Theorem
% Rating : 0.97 v9.0.0, 0.94 v8.1.0, 0.92 v7.5.0, 0.97 v7.2.0, 0.93 v7.1.0, 0.96 v7.0.0, 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.4.0
% Syntax : Number of formulae : 136 ( 21 unt; 0 def)
% Number of atoms : 757 ( 19 equ)
% Maximal formula atoms : 32 ( 5 avg)
% Number of connectives : 718 ( 97 ~; 1 |; 451 &)
% ( 12 <=>; 157 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 63 ( 61 usr; 1 prp; 0-4 aty)
% Number of functors : 18 ( 18 usr; 1 con; 0-3 aty)
% Number of variables : 228 ( 198 !; 30 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t17_waybel34,conjecture,
! [A] :
( ~ v2_setfam_1(A)
=> u1_struct_0(k4_waybel34(A)) = u1_struct_0(k5_waybel34(A)) ) ).
fof(abstractness_v1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_orders_2(A)
=> A = g1_orders_2(u1_struct_0(A),u1_orders_2(A)) ) ) ).
fof(abstractness_v6_altcat_1,axiom,
! [A] :
( l2_altcat_1(A)
=> ( v6_altcat_1(A)
=> A = g2_altcat_1(u1_struct_0(A),u1_altcat_1(A),u2_altcat_1(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc10_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc11_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_yellow_0(A) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc12_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v1_yellow_0(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc1_waybel17,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v22_waybel_0(C,A,B) )
=> ( ~ v1_xboole_0(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ) ) ).
fof(cc1_waybel21,axiom,
! [A,B] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v19_waybel_0(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B) ) ) ) ) ).
fof(cc1_yellow21,axiom,
! [A] :
( l2_altcat_1(A)
=> ( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v3_yellow21(A) )
=> ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_altcat_2(A)
& v2_yellow21(A) ) ) ) ).
fof(cc1_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v1_lattice3(A)
& v2_lattice3(A) ) ) ) ).
fof(cc1_yellow_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A) ) ) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_functor0,axiom,
! [A] :
( l2_altcat_1(A)
=> ( ( ~ v3_struct_0(A)
& v12_altcat_1(A) )
=> ( ~ v3_struct_0(A)
& v1_altcat_2(A) ) ) ) ).
fof(cc2_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v2_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc2_setfam_1,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ~ v1_xboole_0(A) ) ).
fof(cc2_yellow21,axiom,
! [A] :
( l2_altcat_1(A)
=> ( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A) )
=> ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v9_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_altcat_2(A)
& v2_yellow18(A)
& v3_yellow18(A)
& v4_yellow18(A)
& v1_yellow21(A) ) ) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc3_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(cc4_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( v3_yellow_0(A)
=> ( v1_yellow_0(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc5_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v1_yellow_0(A)
& v2_yellow_0(A) )
=> v3_yellow_0(A) ) ) ).
fof(cc6_waybel_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v17_waybel_0(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v19_waybel_0(C,A,B)
& v21_waybel_0(C,A,B) ) ) ) ) ).
fof(cc7_waybel_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v18_waybel_0(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v20_waybel_0(C,A,B)
& v22_waybel_0(C,A,B) ) ) ) ) ).
fof(cc9_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v2_orders_2(A)
& v1_lattice3(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( r1_tarski(A,B)
& r1_tarski(B,A) ) ) ).
fof(d11_setfam_1,axiom,
! [A] :
( v2_setfam_1(A)
<=> ! [B] :
( ~ v1_xboole_0(B)
=> ~ r2_hidden(B,A) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( r1_tarski(A,B)
<=> ! [C] :
( r2_hidden(C,A)
=> r2_hidden(C,B) ) ) ).
fof(d4_waybel34,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ~ ! [B] :
( m1_subset_1(B,A)
=> v1_xboole_0(B) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v6_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v2_yellow21(B)
& l2_altcat_1(B) )
=> ( B = k4_waybel34(A)
<=> ( ! [C] :
( ( v2_orders_2(C)
& v3_orders_2(C)
& v4_orders_2(C)
& v1_lattice3(C)
& v2_lattice3(C)
& l1_orders_2(C) )
=> ( m1_subset_1(C,u1_struct_0(B))
<=> ( v1_orders_2(C)
& v3_lattice3(C)
& r2_hidden(u1_struct_0(C),A) ) ) )
& ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(B))
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(k3_yellow21(B,C)),u1_struct_0(k3_yellow21(B,D)))
& v5_orders_3(E,k3_yellow21(B,C),k3_yellow21(B,D))
& m2_relset_1(E,u1_struct_0(k3_yellow21(B,C)),u1_struct_0(k3_yellow21(B,D))) )
=> ( r2_hidden(E,k1_altcat_1(B,C,D))
<=> v17_waybel_0(E,k3_yellow21(B,C),k3_yellow21(B,D)) ) ) ) ) ) ) ) ) ) ).
fof(d4_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& l2_altcat_1(A) )
=> ( v2_yellow21(A)
<=> ( v9_altcat_1(A)
& v3_yellow18(A)
& ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B) ) )
& ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( ( v2_orders_2(D)
& v3_orders_2(D)
& v4_orders_2(D)
& v1_lattice3(D)
& v2_lattice3(D)
& l1_orders_2(D) )
=> ! [E] :
( ( v2_orders_2(E)
& v3_orders_2(E)
& v4_orders_2(E)
& v1_lattice3(E)
& v2_lattice3(E)
& l1_orders_2(E) )
=> ( ( D = B
& E = C )
=> r1_tarski(k1_altcat_1(A,B,C),k1_orders_3(D,E)) ) ) ) ) ) ) ) ) ).
fof(d5_waybel34,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ~ ! [B] :
( m1_subset_1(B,A)
=> v1_xboole_0(B) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v6_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v2_yellow21(B)
& l2_altcat_1(B) )
=> ( B = k5_waybel34(A)
<=> ( ! [C] :
( ( v2_orders_2(C)
& v3_orders_2(C)
& v4_orders_2(C)
& v1_lattice3(C)
& v2_lattice3(C)
& l1_orders_2(C) )
=> ( m1_subset_1(C,u1_struct_0(B))
<=> ( v1_orders_2(C)
& v3_lattice3(C)
& r2_hidden(u1_struct_0(C),A) ) ) )
& ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(B))
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(k3_yellow21(B,C)),u1_struct_0(k3_yellow21(B,D)))
& v5_orders_3(E,k3_yellow21(B,C),k3_yellow21(B,D))
& m2_relset_1(E,u1_struct_0(k3_yellow21(B,C)),u1_struct_0(k3_yellow21(B,D))) )
=> ( r2_hidden(E,k1_altcat_1(B,C,D))
<=> v18_waybel_0(E,k3_yellow21(B,C),k3_yellow21(B,D)) ) ) ) ) ) ) ) ) ) ).
fof(d6_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> k3_yellow21(A,B) = B ) ) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( v1_orders_2(g1_orders_2(A,B))
& l1_orders_2(g1_orders_2(A,B)) ) ) ).
fof(dt_g2_altcat_1,axiom,
! [A,B,C] :
( ( m1_pboole(B,k2_zfmisc_1(A,A))
& m3_pboole(C,k3_zfmisc_1(A,A,A),k3_altcat_1(A,B,B),k2_altcat_1(A,B)) )
=> ( v6_altcat_1(g2_altcat_1(A,B,C))
& l2_altcat_1(g2_altcat_1(A,B,C)) ) ) ).
fof(dt_k1_altcat_1,axiom,
$true ).
fof(dt_k1_orders_3,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_yellow21,axiom,
! [A] : l1_struct_0(k1_yellow21(A)) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_altcat_1,axiom,
! [A,B] :
( m1_pboole(B,k2_zfmisc_1(A,A))
=> m1_pboole(k2_altcat_1(A,B),k3_zfmisc_1(A,A,A)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_altcat_1,axiom,
! [A,B,C] :
( ( m1_pboole(B,k2_zfmisc_1(A,A))
& m1_pboole(C,k2_zfmisc_1(A,A)) )
=> m1_pboole(k3_altcat_1(A,B,C),k3_zfmisc_1(A,A,A)) ) ).
fof(dt_k3_yellow21,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> ( v2_orders_2(k3_yellow21(A,B))
& v3_orders_2(k3_yellow21(A,B))
& v4_orders_2(k3_yellow21(A,B))
& v1_lattice3(k3_yellow21(A,B))
& v2_lattice3(k3_yellow21(A,B))
& l1_orders_2(k3_yellow21(A,B)) ) ) ).
fof(dt_k3_zfmisc_1,axiom,
$true ).
fof(dt_k4_waybel34,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ~ v3_struct_0(k4_waybel34(A))
& v2_altcat_1(k4_waybel34(A))
& v6_altcat_1(k4_waybel34(A))
& v11_altcat_1(k4_waybel34(A))
& v12_altcat_1(k4_waybel34(A))
& v2_yellow21(k4_waybel34(A))
& l2_altcat_1(k4_waybel34(A)) ) ) ).
fof(dt_k5_waybel34,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ~ v3_struct_0(k5_waybel34(A))
& v2_altcat_1(k5_waybel34(A))
& v6_altcat_1(k5_waybel34(A))
& v11_altcat_1(k5_waybel34(A))
& v12_altcat_1(k5_waybel34(A))
& v2_yellow21(k5_waybel34(A))
& l2_altcat_1(k5_waybel34(A)) ) ) ).
fof(dt_l1_altcat_1,axiom,
! [A] :
( l1_altcat_1(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_altcat_1,axiom,
! [A] :
( l2_altcat_1(A)
=> l1_altcat_1(A) ) ).
fof(dt_m1_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_m3_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> ! [D] :
( m3_pboole(D,A,B,C)
=> m1_pboole(D,A) ) ) ).
fof(dt_u1_altcat_1,axiom,
! [A] :
( l1_altcat_1(A)
=> m1_pboole(u1_altcat_1(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> m2_relset_1(u1_orders_2(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(dt_u2_altcat_1,axiom,
! [A] :
( l2_altcat_1(A)
=> m3_pboole(u2_altcat_1(A),k3_zfmisc_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A)),k3_altcat_1(u1_struct_0(A),u1_altcat_1(A),u1_altcat_1(A)),k2_altcat_1(u1_struct_0(A),u1_altcat_1(A))) ) ).
fof(existence_l1_altcat_1,axiom,
? [A] : l1_altcat_1(A) ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l2_altcat_1,axiom,
? [A] : l2_altcat_1(A) ).
fof(existence_m1_pboole,axiom,
! [A] :
? [B] : m1_pboole(B,A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(existence_m3_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> ? [D] : m3_pboole(D,A,B,C) ) ).
fof(fc10_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v24_waybel_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc15_finset_1,axiom,
! [A,B,C] :
( ( v1_finset_1(A)
& v1_finset_1(B)
& v1_finset_1(C) )
=> v1_finset_1(k3_zfmisc_1(A,B,C)) ) ).
fof(fc1_altcat_4,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v12_altcat_1(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> ~ v1_xboole_0(k1_altcat_1(A,B,B)) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc4_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc5_waybel34,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ( ~ v3_struct_0(k4_waybel34(A))
& v2_altcat_1(k4_waybel34(A))
& v6_altcat_1(k4_waybel34(A))
& v9_altcat_1(k4_waybel34(A))
& v11_altcat_1(k4_waybel34(A))
& v12_altcat_1(k4_waybel34(A))
& v1_altcat_2(k4_waybel34(A))
& v2_yellow18(k4_waybel34(A))
& v3_yellow18(k4_waybel34(A))
& v4_yellow18(k4_waybel34(A))
& v1_yellow21(k4_waybel34(A))
& v2_yellow21(k4_waybel34(A))
& v3_yellow21(k4_waybel34(A)) ) ) ).
fof(fc5_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(fc6_waybel34,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ( ~ v3_struct_0(k5_waybel34(A))
& v2_altcat_1(k5_waybel34(A))
& v6_altcat_1(k5_waybel34(A))
& v9_altcat_1(k5_waybel34(A))
& v11_altcat_1(k5_waybel34(A))
& v12_altcat_1(k5_waybel34(A))
& v1_altcat_2(k5_waybel34(A))
& v2_yellow18(k5_waybel34(A))
& v3_yellow18(k5_waybel34(A))
& v4_yellow18(k5_waybel34(A))
& v1_yellow21(k5_waybel34(A))
& v2_yellow21(k5_waybel34(A))
& v3_yellow21(k5_waybel34(A)) ) ) ).
fof(fc6_waybel_8,axiom,
! [A] :
( ( v3_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v3_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc7_waybel_8,axiom,
! [A] :
( ( v4_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v4_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc8_waybel_8,axiom,
! [A] :
( ( v2_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc9_waybel_8,axiom,
! [A] :
( ( v1_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ! [C,D] :
( g1_orders_2(A,B) = g1_orders_2(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(free_g2_altcat_1,axiom,
! [A,B,C] :
( ( m1_pboole(B,k2_zfmisc_1(A,A))
& m3_pboole(C,k3_zfmisc_1(A,A,A),k3_altcat_1(A,B,B),k2_altcat_1(A,B)) )
=> ! [D,E,F] :
( g2_altcat_1(A,B,C) = g2_altcat_1(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(rc13_waybel_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_lattice3,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v3_lattice3(A) ) ).
fof(rc1_lattice5,axiom,
! [A,B] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v19_waybel_0(C,A,B)
& v20_waybel_0(C,A,B) ) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc1_waybel10,axiom,
! [A,B] :
( ( l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B) ) ) ).
fof(rc1_yellow21,axiom,
? [A] :
( l2_altcat_1(A)
& ~ v3_struct_0(A)
& v2_altcat_1(A)
& v6_altcat_1(A)
& v9_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_altcat_2(A)
& v2_yellow18(A)
& v3_yellow18(A)
& v4_yellow18(A)
& v1_yellow21(A)
& v2_yellow21(A)
& v3_yellow21(A) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_lattice3,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A) ) ).
fof(rc2_setfam_1,axiom,
? [A] : ~ v2_setfam_1(A) ).
fof(rc2_yellow_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_setfam_1,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ? [B] :
( m1_subset_1(B,A)
& ~ v1_xboole_0(B) ) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc3_yellow_9,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& v2_yellow_0(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v17_waybel_0(C,A,B)
& v19_waybel_0(C,A,B)
& v21_waybel_0(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc4_yellow_9,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& v1_yellow_0(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v18_waybel_0(C,A,B)
& v20_waybel_0(C,A,B)
& v22_waybel_0(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc7_functor0,axiom,
? [A] :
( l2_altcat_1(A)
& ~ v3_struct_0(A)
& v1_altcat_2(A) ) ).
fof(redefinition_k3_yellow21,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> k3_yellow21(A,B) = k1_yellow21(B) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------