TPTP Problem File: LAT297+4.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : LAT297+4 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Lattice Theory
% Problem  : Ideals T13
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Ban96] Bancerek (1996), Ideals
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t13_filter_2 [Urb08]

% Status   : Theorem
% Rating   : 0.79 v9.0.0, 0.81 v8.2.0, 0.83 v8.1.0, 0.86 v7.5.0, 0.84 v7.4.0, 0.87 v7.3.0, 0.90 v7.1.0, 0.87 v7.0.0, 0.90 v6.4.0, 0.85 v6.3.0, 0.88 v6.2.0, 0.92 v6.1.0, 0.93 v6.0.0, 0.91 v5.5.0, 0.96 v5.3.0, 1.00 v5.2.0, 0.95 v5.0.0, 1.00 v3.4.0
% Syntax   : Number of formulae    : 34663 (5937 unt;   0 def)
%            Number of atoms       : 243784 (28767 equ)
%            Maximal formula atoms :  208 (   7 avg)
%            Number of connectives : 244321 (35200   ~;2882   |;116824   &)
%                                         (5711 <=>;83704  =>;   0  <=;   0 <~>)
%            Maximal formula depth :  150 (   8 avg)
%            Maximal term depth    :   12 (   1 avg)
%            Number of predicates  : 1826 (1824 usr;   3 prp; 0-8 aty)
%            Number of functors    : 4705 (4705 usr;1028 con; 0-10 aty)
%            Number of variables   : 95522 (90958   !;4564   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Chainy large version: includes all preceding MML articles.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
include('Axioms/SET007/SET007+0.ax').
include('Axioms/SET007/SET007+1.ax').
include('Axioms/SET007/SET007+2.ax').
include('Axioms/SET007/SET007+3.ax').
include('Axioms/SET007/SET007+4.ax').
include('Axioms/SET007/SET007+5.ax').
include('Axioms/SET007/SET007+6.ax').
include('Axioms/SET007/SET007+7.ax').
include('Axioms/SET007/SET007+8.ax').
include('Axioms/SET007/SET007+9.ax').
include('Axioms/SET007/SET007+10.ax').
include('Axioms/SET007/SET007+11.ax').
include('Axioms/SET007/SET007+12.ax').
include('Axioms/SET007/SET007+13.ax').
include('Axioms/SET007/SET007+14.ax').
include('Axioms/SET007/SET007+15.ax').
include('Axioms/SET007/SET007+16.ax').
include('Axioms/SET007/SET007+17.ax').
include('Axioms/SET007/SET007+18.ax').
include('Axioms/SET007/SET007+19.ax').
include('Axioms/SET007/SET007+20.ax').
include('Axioms/SET007/SET007+21.ax').
include('Axioms/SET007/SET007+22.ax').
include('Axioms/SET007/SET007+23.ax').
include('Axioms/SET007/SET007+24.ax').
include('Axioms/SET007/SET007+25.ax').
include('Axioms/SET007/SET007+26.ax').
include('Axioms/SET007/SET007+27.ax').
include('Axioms/SET007/SET007+28.ax').
include('Axioms/SET007/SET007+29.ax').
include('Axioms/SET007/SET007+30.ax').
include('Axioms/SET007/SET007+31.ax').
include('Axioms/SET007/SET007+32.ax').
include('Axioms/SET007/SET007+33.ax').
include('Axioms/SET007/SET007+34.ax').
include('Axioms/SET007/SET007+35.ax').
include('Axioms/SET007/SET007+36.ax').
include('Axioms/SET007/SET007+37.ax').
include('Axioms/SET007/SET007+38.ax').
include('Axioms/SET007/SET007+39.ax').
include('Axioms/SET007/SET007+40.ax').
include('Axioms/SET007/SET007+41.ax').
include('Axioms/SET007/SET007+42.ax').
include('Axioms/SET007/SET007+43.ax').
include('Axioms/SET007/SET007+44.ax').
include('Axioms/SET007/SET007+45.ax').
include('Axioms/SET007/SET007+46.ax').
include('Axioms/SET007/SET007+47.ax').
include('Axioms/SET007/SET007+48.ax').
include('Axioms/SET007/SET007+49.ax').
include('Axioms/SET007/SET007+50.ax').
include('Axioms/SET007/SET007+51.ax').
include('Axioms/SET007/SET007+52.ax').
include('Axioms/SET007/SET007+53.ax').
include('Axioms/SET007/SET007+54.ax').
include('Axioms/SET007/SET007+55.ax').
include('Axioms/SET007/SET007+56.ax').
include('Axioms/SET007/SET007+57.ax').
include('Axioms/SET007/SET007+58.ax').
include('Axioms/SET007/SET007+59.ax').
include('Axioms/SET007/SET007+60.ax').
include('Axioms/SET007/SET007+61.ax').
include('Axioms/SET007/SET007+62.ax').
include('Axioms/SET007/SET007+63.ax').
include('Axioms/SET007/SET007+64.ax').
include('Axioms/SET007/SET007+65.ax').
include('Axioms/SET007/SET007+66.ax').
include('Axioms/SET007/SET007+67.ax').
include('Axioms/SET007/SET007+68.ax').
include('Axioms/SET007/SET007+69.ax').
include('Axioms/SET007/SET007+70.ax').
include('Axioms/SET007/SET007+71.ax').
include('Axioms/SET007/SET007+72.ax').
include('Axioms/SET007/SET007+73.ax').
include('Axioms/SET007/SET007+74.ax').
include('Axioms/SET007/SET007+75.ax').
include('Axioms/SET007/SET007+76.ax').
include('Axioms/SET007/SET007+77.ax').
include('Axioms/SET007/SET007+78.ax').
include('Axioms/SET007/SET007+79.ax').
include('Axioms/SET007/SET007+80.ax').
include('Axioms/SET007/SET007+81.ax').
include('Axioms/SET007/SET007+82.ax').
include('Axioms/SET007/SET007+83.ax').
include('Axioms/SET007/SET007+84.ax').
include('Axioms/SET007/SET007+85.ax').
include('Axioms/SET007/SET007+86.ax').
include('Axioms/SET007/SET007+87.ax').
include('Axioms/SET007/SET007+88.ax').
include('Axioms/SET007/SET007+89.ax').
include('Axioms/SET007/SET007+90.ax').
include('Axioms/SET007/SET007+91.ax').
include('Axioms/SET007/SET007+92.ax').
include('Axioms/SET007/SET007+93.ax').
include('Axioms/SET007/SET007+94.ax').
include('Axioms/SET007/SET007+95.ax').
include('Axioms/SET007/SET007+96.ax').
include('Axioms/SET007/SET007+97.ax').
include('Axioms/SET007/SET007+98.ax').
include('Axioms/SET007/SET007+99.ax').
include('Axioms/SET007/SET007+100.ax').
include('Axioms/SET007/SET007+101.ax').
include('Axioms/SET007/SET007+102.ax').
include('Axioms/SET007/SET007+103.ax').
include('Axioms/SET007/SET007+104.ax').
include('Axioms/SET007/SET007+105.ax').
include('Axioms/SET007/SET007+106.ax').
include('Axioms/SET007/SET007+107.ax').
include('Axioms/SET007/SET007+108.ax').
include('Axioms/SET007/SET007+109.ax').
include('Axioms/SET007/SET007+110.ax').
include('Axioms/SET007/SET007+111.ax').
include('Axioms/SET007/SET007+112.ax').
include('Axioms/SET007/SET007+113.ax').
include('Axioms/SET007/SET007+114.ax').
include('Axioms/SET007/SET007+115.ax').
include('Axioms/SET007/SET007+116.ax').
include('Axioms/SET007/SET007+117.ax').
include('Axioms/SET007/SET007+118.ax').
include('Axioms/SET007/SET007+119.ax').
include('Axioms/SET007/SET007+120.ax').
include('Axioms/SET007/SET007+121.ax').
include('Axioms/SET007/SET007+122.ax').
include('Axioms/SET007/SET007+123.ax').
include('Axioms/SET007/SET007+124.ax').
include('Axioms/SET007/SET007+125.ax').
include('Axioms/SET007/SET007+126.ax').
include('Axioms/SET007/SET007+127.ax').
include('Axioms/SET007/SET007+128.ax').
include('Axioms/SET007/SET007+129.ax').
include('Axioms/SET007/SET007+130.ax').
include('Axioms/SET007/SET007+131.ax').
include('Axioms/SET007/SET007+132.ax').
include('Axioms/SET007/SET007+133.ax').
include('Axioms/SET007/SET007+134.ax').
include('Axioms/SET007/SET007+135.ax').
include('Axioms/SET007/SET007+136.ax').
include('Axioms/SET007/SET007+137.ax').
include('Axioms/SET007/SET007+138.ax').
include('Axioms/SET007/SET007+139.ax').
include('Axioms/SET007/SET007+140.ax').
include('Axioms/SET007/SET007+141.ax').
include('Axioms/SET007/SET007+142.ax').
include('Axioms/SET007/SET007+143.ax').
include('Axioms/SET007/SET007+144.ax').
include('Axioms/SET007/SET007+145.ax').
include('Axioms/SET007/SET007+146.ax').
include('Axioms/SET007/SET007+147.ax').
include('Axioms/SET007/SET007+148.ax').
include('Axioms/SET007/SET007+149.ax').
include('Axioms/SET007/SET007+150.ax').
include('Axioms/SET007/SET007+151.ax').
include('Axioms/SET007/SET007+152.ax').
include('Axioms/SET007/SET007+153.ax').
include('Axioms/SET007/SET007+154.ax').
include('Axioms/SET007/SET007+155.ax').
include('Axioms/SET007/SET007+156.ax').
include('Axioms/SET007/SET007+157.ax').
include('Axioms/SET007/SET007+158.ax').
include('Axioms/SET007/SET007+159.ax').
include('Axioms/SET007/SET007+160.ax').
include('Axioms/SET007/SET007+161.ax').
include('Axioms/SET007/SET007+162.ax').
include('Axioms/SET007/SET007+163.ax').
include('Axioms/SET007/SET007+164.ax').
include('Axioms/SET007/SET007+165.ax').
include('Axioms/SET007/SET007+166.ax').
include('Axioms/SET007/SET007+167.ax').
include('Axioms/SET007/SET007+168.ax').
include('Axioms/SET007/SET007+169.ax').
include('Axioms/SET007/SET007+170.ax').
include('Axioms/SET007/SET007+171.ax').
include('Axioms/SET007/SET007+172.ax').
include('Axioms/SET007/SET007+173.ax').
include('Axioms/SET007/SET007+174.ax').
include('Axioms/SET007/SET007+175.ax').
include('Axioms/SET007/SET007+176.ax').
include('Axioms/SET007/SET007+177.ax').
include('Axioms/SET007/SET007+178.ax').
include('Axioms/SET007/SET007+179.ax').
include('Axioms/SET007/SET007+180.ax').
include('Axioms/SET007/SET007+181.ax').
include('Axioms/SET007/SET007+182.ax').
include('Axioms/SET007/SET007+183.ax').
include('Axioms/SET007/SET007+184.ax').
include('Axioms/SET007/SET007+185.ax').
include('Axioms/SET007/SET007+186.ax').
include('Axioms/SET007/SET007+187.ax').
include('Axioms/SET007/SET007+188.ax').
include('Axioms/SET007/SET007+189.ax').
include('Axioms/SET007/SET007+190.ax').
include('Axioms/SET007/SET007+191.ax').
include('Axioms/SET007/SET007+192.ax').
include('Axioms/SET007/SET007+193.ax').
include('Axioms/SET007/SET007+194.ax').
include('Axioms/SET007/SET007+195.ax').
include('Axioms/SET007/SET007+196.ax').
include('Axioms/SET007/SET007+197.ax').
include('Axioms/SET007/SET007+198.ax').
include('Axioms/SET007/SET007+199.ax').
include('Axioms/SET007/SET007+200.ax').
include('Axioms/SET007/SET007+201.ax').
include('Axioms/SET007/SET007+202.ax').
include('Axioms/SET007/SET007+203.ax').
include('Axioms/SET007/SET007+204.ax').
include('Axioms/SET007/SET007+205.ax').
include('Axioms/SET007/SET007+206.ax').
include('Axioms/SET007/SET007+207.ax').
include('Axioms/SET007/SET007+208.ax').
include('Axioms/SET007/SET007+209.ax').
include('Axioms/SET007/SET007+210.ax').
include('Axioms/SET007/SET007+211.ax').
include('Axioms/SET007/SET007+212.ax').
include('Axioms/SET007/SET007+213.ax').
include('Axioms/SET007/SET007+214.ax').
include('Axioms/SET007/SET007+215.ax').
include('Axioms/SET007/SET007+216.ax').
include('Axioms/SET007/SET007+217.ax').
include('Axioms/SET007/SET007+218.ax').
include('Axioms/SET007/SET007+219.ax').
include('Axioms/SET007/SET007+220.ax').
include('Axioms/SET007/SET007+221.ax').
include('Axioms/SET007/SET007+222.ax').
include('Axioms/SET007/SET007+223.ax').
include('Axioms/SET007/SET007+224.ax').
include('Axioms/SET007/SET007+225.ax').
include('Axioms/SET007/SET007+226.ax').
include('Axioms/SET007/SET007+227.ax').
include('Axioms/SET007/SET007+228.ax').
include('Axioms/SET007/SET007+229.ax').
include('Axioms/SET007/SET007+230.ax').
include('Axioms/SET007/SET007+231.ax').
include('Axioms/SET007/SET007+232.ax').
include('Axioms/SET007/SET007+233.ax').
include('Axioms/SET007/SET007+234.ax').
include('Axioms/SET007/SET007+235.ax').
include('Axioms/SET007/SET007+236.ax').
include('Axioms/SET007/SET007+237.ax').
include('Axioms/SET007/SET007+238.ax').
include('Axioms/SET007/SET007+239.ax').
include('Axioms/SET007/SET007+240.ax').
include('Axioms/SET007/SET007+241.ax').
include('Axioms/SET007/SET007+242.ax').
include('Axioms/SET007/SET007+243.ax').
include('Axioms/SET007/SET007+244.ax').
include('Axioms/SET007/SET007+245.ax').
include('Axioms/SET007/SET007+246.ax').
include('Axioms/SET007/SET007+247.ax').
include('Axioms/SET007/SET007+248.ax').
include('Axioms/SET007/SET007+249.ax').
include('Axioms/SET007/SET007+250.ax').
include('Axioms/SET007/SET007+251.ax').
include('Axioms/SET007/SET007+252.ax').
include('Axioms/SET007/SET007+253.ax').
include('Axioms/SET007/SET007+254.ax').
include('Axioms/SET007/SET007+255.ax').
include('Axioms/SET007/SET007+256.ax').
include('Axioms/SET007/SET007+257.ax').
include('Axioms/SET007/SET007+258.ax').
include('Axioms/SET007/SET007+259.ax').
include('Axioms/SET007/SET007+260.ax').
include('Axioms/SET007/SET007+261.ax').
include('Axioms/SET007/SET007+262.ax').
include('Axioms/SET007/SET007+263.ax').
include('Axioms/SET007/SET007+264.ax').
include('Axioms/SET007/SET007+265.ax').
include('Axioms/SET007/SET007+266.ax').
include('Axioms/SET007/SET007+267.ax').
include('Axioms/SET007/SET007+268.ax').
include('Axioms/SET007/SET007+269.ax').
include('Axioms/SET007/SET007+270.ax').
include('Axioms/SET007/SET007+271.ax').
include('Axioms/SET007/SET007+272.ax').
include('Axioms/SET007/SET007+273.ax').
include('Axioms/SET007/SET007+274.ax').
include('Axioms/SET007/SET007+275.ax').
include('Axioms/SET007/SET007+276.ax').
include('Axioms/SET007/SET007+277.ax').
include('Axioms/SET007/SET007+278.ax').
include('Axioms/SET007/SET007+279.ax').
include('Axioms/SET007/SET007+280.ax').
include('Axioms/SET007/SET007+281.ax').
include('Axioms/SET007/SET007+282.ax').
include('Axioms/SET007/SET007+283.ax').
include('Axioms/SET007/SET007+284.ax').
include('Axioms/SET007/SET007+285.ax').
include('Axioms/SET007/SET007+286.ax').
include('Axioms/SET007/SET007+287.ax').
include('Axioms/SET007/SET007+288.ax').
include('Axioms/SET007/SET007+289.ax').
include('Axioms/SET007/SET007+290.ax').
include('Axioms/SET007/SET007+291.ax').
include('Axioms/SET007/SET007+292.ax').
include('Axioms/SET007/SET007+293.ax').
include('Axioms/SET007/SET007+294.ax').
include('Axioms/SET007/SET007+295.ax').
include('Axioms/SET007/SET007+296.ax').
include('Axioms/SET007/SET007+297.ax').
include('Axioms/SET007/SET007+298.ax').
include('Axioms/SET007/SET007+299.ax').
include('Axioms/SET007/SET007+300.ax').
include('Axioms/SET007/SET007+301.ax').
include('Axioms/SET007/SET007+302.ax').
include('Axioms/SET007/SET007+303.ax').
include('Axioms/SET007/SET007+304.ax').
include('Axioms/SET007/SET007+305.ax').
include('Axioms/SET007/SET007+306.ax').
include('Axioms/SET007/SET007+307.ax').
include('Axioms/SET007/SET007+308.ax').
include('Axioms/SET007/SET007+309.ax').
include('Axioms/SET007/SET007+310.ax').
include('Axioms/SET007/SET007+311.ax').
include('Axioms/SET007/SET007+312.ax').
include('Axioms/SET007/SET007+313.ax').
include('Axioms/SET007/SET007+314.ax').
include('Axioms/SET007/SET007+315.ax').
include('Axioms/SET007/SET007+316.ax').
include('Axioms/SET007/SET007+317.ax').
include('Axioms/SET007/SET007+318.ax').
include('Axioms/SET007/SET007+319.ax').
include('Axioms/SET007/SET007+320.ax').
include('Axioms/SET007/SET007+321.ax').
include('Axioms/SET007/SET007+322.ax').
include('Axioms/SET007/SET007+323.ax').
include('Axioms/SET007/SET007+324.ax').
include('Axioms/SET007/SET007+325.ax').
include('Axioms/SET007/SET007+326.ax').
include('Axioms/SET007/SET007+327.ax').
include('Axioms/SET007/SET007+328.ax').
include('Axioms/SET007/SET007+329.ax').
include('Axioms/SET007/SET007+330.ax').
include('Axioms/SET007/SET007+331.ax').
include('Axioms/SET007/SET007+332.ax').
include('Axioms/SET007/SET007+333.ax').
include('Axioms/SET007/SET007+334.ax').
include('Axioms/SET007/SET007+335.ax').
include('Axioms/SET007/SET007+336.ax').
include('Axioms/SET007/SET007+337.ax').
include('Axioms/SET007/SET007+338.ax').
include('Axioms/SET007/SET007+339.ax').
include('Axioms/SET007/SET007+340.ax').
include('Axioms/SET007/SET007+341.ax').
include('Axioms/SET007/SET007+342.ax').
include('Axioms/SET007/SET007+343.ax').
include('Axioms/SET007/SET007+344.ax').
include('Axioms/SET007/SET007+345.ax').
include('Axioms/SET007/SET007+346.ax').
include('Axioms/SET007/SET007+347.ax').
include('Axioms/SET007/SET007+348.ax').
include('Axioms/SET007/SET007+349.ax').
include('Axioms/SET007/SET007+350.ax').
include('Axioms/SET007/SET007+351.ax').
include('Axioms/SET007/SET007+352.ax').
include('Axioms/SET007/SET007+353.ax').
include('Axioms/SET007/SET007+354.ax').
include('Axioms/SET007/SET007+355.ax').
include('Axioms/SET007/SET007+356.ax').
include('Axioms/SET007/SET007+357.ax').
include('Axioms/SET007/SET007+358.ax').
include('Axioms/SET007/SET007+359.ax').
include('Axioms/SET007/SET007+360.ax').
include('Axioms/SET007/SET007+361.ax').
include('Axioms/SET007/SET007+362.ax').
include('Axioms/SET007/SET007+363.ax').
include('Axioms/SET007/SET007+364.ax').
include('Axioms/SET007/SET007+365.ax').
include('Axioms/SET007/SET007+366.ax').
include('Axioms/SET007/SET007+367.ax').
include('Axioms/SET007/SET007+368.ax').
include('Axioms/SET007/SET007+369.ax').
include('Axioms/SET007/SET007+370.ax').
include('Axioms/SET007/SET007+371.ax').
include('Axioms/SET007/SET007+372.ax').
include('Axioms/SET007/SET007+373.ax').
include('Axioms/SET007/SET007+374.ax').
include('Axioms/SET007/SET007+375.ax').
include('Axioms/SET007/SET007+376.ax').
include('Axioms/SET007/SET007+377.ax').
include('Axioms/SET007/SET007+378.ax').
include('Axioms/SET007/SET007+379.ax').
include('Axioms/SET007/SET007+380.ax').
include('Axioms/SET007/SET007+381.ax').
include('Axioms/SET007/SET007+382.ax').
include('Axioms/SET007/SET007+383.ax').
include('Axioms/SET007/SET007+384.ax').
include('Axioms/SET007/SET007+385.ax').
include('Axioms/SET007/SET007+386.ax').
include('Axioms/SET007/SET007+387.ax').
include('Axioms/SET007/SET007+388.ax').
include('Axioms/SET007/SET007+389.ax').
include('Axioms/SET007/SET007+390.ax').
include('Axioms/SET007/SET007+391.ax').
include('Axioms/SET007/SET007+392.ax').
include('Axioms/SET007/SET007+393.ax').
include('Axioms/SET007/SET007+394.ax').
include('Axioms/SET007/SET007+395.ax').
include('Axioms/SET007/SET007+396.ax').
include('Axioms/SET007/SET007+397.ax').
include('Axioms/SET007/SET007+398.ax').
include('Axioms/SET007/SET007+399.ax').
include('Axioms/SET007/SET007+400.ax').
include('Axioms/SET007/SET007+401.ax').
include('Axioms/SET007/SET007+402.ax').
include('Axioms/SET007/SET007+403.ax').
include('Axioms/SET007/SET007+404.ax').
include('Axioms/SET007/SET007+405.ax').
include('Axioms/SET007/SET007+406.ax').
include('Axioms/SET007/SET007+407.ax').
include('Axioms/SET007/SET007+408.ax').
include('Axioms/SET007/SET007+409.ax').
include('Axioms/SET007/SET007+410.ax').
%------------------------------------------------------------------------------
fof(dt_m1_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m1_filter_2(B,A)
         => ( ~ v1_xboole_0(B)
            & m2_lattice4(B,A) ) ) ) ).

fof(existence_m1_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ? [B] : m1_filter_2(B,A) ) ).

fof(redefinition_m1_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m1_filter_2(B,A)
        <=> m1_filter_0(B,A) ) ) ).

fof(dt_m2_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m2_filter_2(B,A)
         => ( ~ v1_xboole_0(B)
            & m2_lattice4(B,A) ) ) ) ).

fof(existence_m2_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ? [B] : m2_filter_2(B,A) ) ).

fof(symmetry_r1_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v1_xboole_0(A)
        & m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => ( r1_filter_2(A,B,C)
       => r1_filter_2(A,C,B) ) ) ).

fof(reflexivity_r1_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v1_xboole_0(A)
        & m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => r1_filter_2(A,B,B) ) ).

fof(redefinition_r1_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v1_xboole_0(A)
        & m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => ( r1_filter_2(A,B,C)
      <=> B = C ) ) ).

fof(dt_k1_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => m1_filter_2(k1_filter_2(A),A) ) ).

fof(redefinition_k1_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => k1_filter_2(A) = k1_filter_0(A) ) ).

fof(dt_k2_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,u1_struct_0(A)) )
     => m1_filter_2(k2_filter_2(A,B),A) ) ).

fof(redefinition_k2_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,u1_struct_0(A)) )
     => k2_filter_2(A,B) = k2_filter_0(A,B) ) ).

fof(dt_k3_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => m1_filter_2(k3_filter_2(A,B),A) ) ).

fof(redefinition_k3_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => k3_filter_2(A,B) = k3_filter_0(A,B) ) ).

fof(dt_k4_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v11_lattices(A)
        & l3_lattices(A)
        & m1_filter_0(B,A)
        & m1_filter_0(C,A) )
     => m1_filter_2(k4_filter_2(A,B,C),A) ) ).

fof(redefinition_k4_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v11_lattices(A)
        & l3_lattices(A)
        & m1_filter_0(B,A)
        & m1_filter_0(C,A) )
     => k4_filter_2(A,B,C) = k5_filter_0(A,B,C) ) ).

fof(dt_k5_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,u1_struct_0(A)) )
     => m1_subset_1(k5_filter_2(A,B),u1_struct_0(k1_lattice2(A))) ) ).

fof(dt_k6_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,u1_struct_0(k1_lattice2(A))) )
     => m1_subset_1(k6_filter_2(A,B),u1_struct_0(A)) ) ).

fof(dt_k7_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => m1_subset_1(k7_filter_2(A,B),k1_zfmisc_1(u1_struct_0(k1_lattice2(A)))) ) ).

fof(dt_k8_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(k1_lattice2(A)))) )
     => m1_subset_1(k8_filter_2(A,B),k1_zfmisc_1(u1_struct_0(A))) ) ).

fof(dt_k9_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_lattice4(B,A) )
     => m2_lattice4(k9_filter_2(A,B),k1_lattice2(A)) ) ).

fof(redefinition_k9_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_lattice4(B,A) )
     => k9_filter_2(A,B) = k7_filter_2(A,B) ) ).

fof(dt_k10_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m2_lattice4(B,A) )
     => ( ~ v1_xboole_0(k10_filter_2(A,B))
        & m2_lattice4(k10_filter_2(A,B),k1_lattice2(A)) ) ) ).

fof(redefinition_k10_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m2_lattice4(B,A) )
     => k10_filter_2(A,B) = k7_filter_2(A,B) ) ).

fof(dt_k11_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_lattice4(B,k1_lattice2(A)) )
     => m2_lattice4(k11_filter_2(A,B),A) ) ).

fof(redefinition_k11_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_lattice4(B,k1_lattice2(A)) )
     => k11_filter_2(A,B) = k8_filter_2(A,B) ) ).

fof(dt_k12_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m2_lattice4(B,k1_lattice2(A)) )
     => ( ~ v1_xboole_0(k12_filter_2(A,B))
        & m2_lattice4(k12_filter_2(A,B),A) ) ) ).

fof(redefinition_k12_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m2_lattice4(B,k1_lattice2(A)) )
     => k12_filter_2(A,B) = k8_filter_2(A,B) ) ).

fof(dt_k13_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_filter_0(B,A) )
     => m2_filter_2(k13_filter_2(A,B),k1_lattice2(A)) ) ).

fof(redefinition_k13_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_filter_0(B,A) )
     => k13_filter_2(A,B) = k7_filter_2(A,B) ) ).

fof(dt_k14_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_filter_0(B,k1_lattice2(A)) )
     => m2_filter_2(k14_filter_2(A,B),A) ) ).

fof(redefinition_k14_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_filter_0(B,k1_lattice2(A)) )
     => k14_filter_2(A,B) = k8_filter_2(A,B) ) ).

fof(dt_k15_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_filter_2(B,A) )
     => m1_filter_2(k15_filter_2(A,B),k1_lattice2(A)) ) ).

fof(redefinition_k15_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_filter_2(B,A) )
     => k15_filter_2(A,B) = k7_filter_2(A,B) ) ).

fof(dt_k16_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_filter_2(B,k1_lattice2(A)) )
     => m1_filter_2(k16_filter_2(A,B),A) ) ).

fof(redefinition_k16_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_filter_2(B,k1_lattice2(A)) )
     => k16_filter_2(A,B) = k8_filter_2(A,B) ) ).

fof(dt_k17_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => m2_filter_2(k17_filter_2(A),A) ) ).

fof(dt_k18_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,u1_struct_0(A)) )
     => m2_filter_2(k18_filter_2(A,B),A) ) ).

fof(dt_k19_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => m2_filter_2(k19_filter_2(A,B),A) ) ).

fof(dt_k20_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
        & ~ v1_xboole_0(C)
        & m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A))) )
     => m1_subset_1(k20_filter_2(A,B,C),k1_zfmisc_1(u1_struct_0(A))) ) ).

fof(dt_k21_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v11_lattices(A)
        & l3_lattices(A)
        & m2_filter_2(B,A)
        & m2_filter_2(C,A) )
     => m2_filter_2(k21_filter_2(A,B,C),A) ) ).

fof(redefinition_k21_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v11_lattices(A)
        & l3_lattices(A)
        & m2_filter_2(B,A)
        & m2_filter_2(C,A) )
     => k21_filter_2(A,B,C) = k20_filter_2(A,B,C) ) ).

fof(dt_k22_filter_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m1_subset_1(B,u1_struct_0(A))
        & m1_subset_1(C,u1_struct_0(A)) )
     => ( ~ v1_xboole_0(k22_filter_2(A,B,C))
        & m2_lattice4(k22_filter_2(A,B,C),A) ) ) ).

fof(dt_k23_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & ~ v1_xboole_0(B)
        & m2_lattice4(B,A) )
     => m2_nat_lat(k23_filter_2(A,B),A) ) ).

fof(dt_k24_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_nat_lat(B,A) )
     => ( v3_lattices(k24_filter_2(A,B))
        & m2_nat_lat(k24_filter_2(A,B),k1_lattice2(A)) ) ) ).

fof(redefinition_k24_filter_2,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A)
        & m2_nat_lat(B,A) )
     => k24_filter_2(A,B) = k1_lattice2(B) ) ).

fof(t1_filter_2,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ( ~ v1_xboole_0(B)
            & m1_subset_1(B,k1_zfmisc_1(A)) )
         => ! [C] :
              ( ( v1_funct_1(C)
                & v1_funct_2(C,k2_zfmisc_1(A,A),A)
                & m2_relset_1(C,k2_zfmisc_1(A,A),A) )
             => ! [D] :
                  ( ( v1_funct_1(D)
                    & v1_funct_2(D,k2_zfmisc_1(B,B),B)
                    & m2_relset_1(D,k2_zfmisc_1(B,B),B) )
                 => ( D = k1_realset1(C,B)
                   => ( ( v1_binop_1(C,A)
                       => v1_binop_1(D,B) )
                      & ( v3_binop_1(C,A)
                       => v3_binop_1(D,B) )
                      & ( v2_binop_1(C,A)
                       => v2_binop_1(D,B) ) ) ) ) ) ) ) ).

fof(t2_filter_2,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ( ~ v1_xboole_0(B)
            & m1_subset_1(B,k1_zfmisc_1(A)) )
         => ! [C] :
              ( ( v1_funct_1(C)
                & v1_funct_2(C,k2_zfmisc_1(A,A),A)
                & m2_relset_1(C,k2_zfmisc_1(A,A),A) )
             => ! [D] :
                  ( ( v1_funct_1(D)
                    & v1_funct_2(D,k2_zfmisc_1(B,B),B)
                    & m2_relset_1(D,k2_zfmisc_1(B,B),B) )
                 => ! [E] :
                      ( m1_subset_1(E,A)
                     => ! [F] :
                          ( m2_subset_1(F,A,B)
                         => ( ( D = k1_realset1(C,B)
                              & F = E )
                           => ( ( r1_binop_1(A,E,C)
                               => r1_binop_1(B,F,D) )
                              & ( r2_binop_1(A,E,C)
                               => r2_binop_1(B,F,D) )
                              & ( r3_binop_1(A,E,C)
                               => r3_binop_1(B,F,D) ) ) ) ) ) ) ) ) ) ).

fof(t3_filter_2,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ( ~ v1_xboole_0(B)
            & m1_subset_1(B,k1_zfmisc_1(A)) )
         => ! [C] :
              ( ( v1_funct_1(C)
                & v1_funct_2(C,k2_zfmisc_1(A,A),A)
                & m2_relset_1(C,k2_zfmisc_1(A,A),A) )
             => ! [D] :
                  ( ( v1_funct_1(D)
                    & v1_funct_2(D,k2_zfmisc_1(A,A),A)
                    & m2_relset_1(D,k2_zfmisc_1(A,A),A) )
                 => ! [E] :
                      ( ( v1_funct_1(E)
                        & v1_funct_2(E,k2_zfmisc_1(B,B),B)
                        & m2_relset_1(E,k2_zfmisc_1(B,B),B) )
                     => ! [F] :
                          ( ( v1_funct_1(F)
                            & v1_funct_2(F,k2_zfmisc_1(B,B),B)
                            & m2_relset_1(F,k2_zfmisc_1(B,B),B) )
                         => ( ( E = k1_realset1(C,B)
                              & F = k1_realset1(D,B) )
                           => ( ( r4_binop_1(A,C,D)
                               => r4_binop_1(B,E,F) )
                              & ( r5_binop_1(A,C,D)
                               => r5_binop_1(B,E,F) ) ) ) ) ) ) ) ) ) ).

fof(t4_filter_2,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ( ~ v1_xboole_0(B)
            & m1_subset_1(B,k1_zfmisc_1(A)) )
         => ! [C] :
              ( ( v1_funct_1(C)
                & v1_funct_2(C,k2_zfmisc_1(A,A),A)
                & m2_relset_1(C,k2_zfmisc_1(A,A),A) )
             => ! [D] :
                  ( ( v1_funct_1(D)
                    & v1_funct_2(D,k2_zfmisc_1(A,A),A)
                    & m2_relset_1(D,k2_zfmisc_1(A,A),A) )
                 => ! [E] :
                      ( ( v1_funct_1(E)
                        & v1_funct_2(E,k2_zfmisc_1(B,B),B)
                        & m2_relset_1(E,k2_zfmisc_1(B,B),B) )
                     => ! [F] :
                          ( ( v1_funct_1(F)
                            & v1_funct_2(F,k2_zfmisc_1(B,B),B)
                            & m2_relset_1(F,k2_zfmisc_1(B,B),B) )
                         => ( ( E = k1_realset1(C,B)
                              & F = k1_realset1(D,B)
                              & r6_binop_1(A,C,D) )
                           => r6_binop_1(B,E,F) ) ) ) ) ) ) ) ).

fof(t5_filter_2,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ( ~ v1_xboole_0(B)
            & m1_subset_1(B,k1_zfmisc_1(A)) )
         => ! [C] :
              ( ( v1_funct_1(C)
                & v1_funct_2(C,k2_zfmisc_1(A,A),A)
                & m2_relset_1(C,k2_zfmisc_1(A,A),A) )
             => ! [D] :
                  ( ( v1_funct_1(D)
                    & v1_funct_2(D,k2_zfmisc_1(A,A),A)
                    & m2_relset_1(D,k2_zfmisc_1(A,A),A) )
                 => ! [E] :
                      ( ( v1_funct_1(E)
                        & v1_funct_2(E,k2_zfmisc_1(B,B),B)
                        & m2_relset_1(E,k2_zfmisc_1(B,B),B) )
                     => ! [F] :
                          ( ( v1_funct_1(F)
                            & v1_funct_2(F,k2_zfmisc_1(B,B),B)
                            & m2_relset_1(F,k2_zfmisc_1(B,B),B) )
                         => ( ( E = k1_realset1(C,B)
                              & F = k1_realset1(D,B)
                              & r1_lattice2(A,C,D) )
                           => r1_lattice2(B,E,F) ) ) ) ) ) ) ) ).

fof(d1_filter_2,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
         => ! [C] :
              ( m1_subset_1(C,k1_zfmisc_1(A))
             => ( r1_filter_2(A,B,C)
              <=> ! [D] :
                    ( m1_subset_1(D,A)
                   => ( r2_hidden(D,B)
                    <=> r2_hidden(D,C) ) ) ) ) ) ) ).

fof(t6_filter_2,axiom,
    ! [A] :
      ( l3_lattices(A)
     => ! [B] :
          ( l3_lattices(B)
         => ( g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) = g3_lattices(u1_struct_0(B),u2_lattices(B),u1_lattices(B))
           => k1_lattice2(A) = k1_lattice2(B) ) ) ) ).

fof(t7_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => k1_lattice2(k1_lattice2(A)) = g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) ) ).

fof(t8_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l3_lattices(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & l3_lattices(B) )
         => ( g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) = g3_lattices(u1_struct_0(B),u2_lattices(B),u1_lattices(B))
           => ! [C] :
                ( m1_subset_1(C,u1_struct_0(A))
               => ! [D] :
                    ( m1_subset_1(D,u1_struct_0(A))
                   => ! [E] :
                        ( m1_subset_1(E,u1_struct_0(B))
                       => ! [F] :
                            ( m1_subset_1(F,u1_struct_0(B))
                           => ( ( C = E
                                & D = F )
                             => ( k1_lattices(A,C,D) = k1_lattices(B,E,F)
                                & k2_lattices(A,C,D) = k2_lattices(B,E,F)
                                & ( r1_lattices(A,C,D)
                                 => r1_lattices(B,E,F) )
                                & ( r1_lattices(B,E,F)
                                 => r1_lattices(A,C,D) ) ) ) ) ) ) ) ) ) ) ).

fof(t9_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v13_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & v10_lattices(B)
            & v13_lattices(B)
            & l3_lattices(B) )
         => ( g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) = g3_lattices(u1_struct_0(B),u2_lattices(B),u1_lattices(B))
           => k5_lattices(A) = k5_lattices(B) ) ) ) ).

fof(t10_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v14_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & v10_lattices(B)
            & v14_lattices(B)
            & l3_lattices(B) )
         => ( g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) = g3_lattices(u1_struct_0(B),u2_lattices(B),u1_lattices(B))
           => k6_lattices(A) = k6_lattices(B) ) ) ) ).

fof(t11_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v15_lattices(A)
        & v16_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & v10_lattices(B)
            & v15_lattices(B)
            & v16_lattices(B)
            & l3_lattices(B) )
         => ( g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) = g3_lattices(u1_struct_0(B),u2_lattices(B),u1_lattices(B))
           => ! [C] :
                ( m1_subset_1(C,u1_struct_0(A))
               => ! [D] :
                    ( m1_subset_1(D,u1_struct_0(A))
                   => ! [E] :
                        ( m1_subset_1(E,u1_struct_0(B))
                       => ! [F] :
                            ( m1_subset_1(F,u1_struct_0(B))
                           => ( ( C = E
                                & D = F
                                & r2_lattices(A,C,D) )
                             => r2_lattices(B,E,F) ) ) ) ) ) ) ) ) ).

fof(t12_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & v17_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & v10_lattices(B)
            & v17_lattices(B)
            & l3_lattices(B) )
         => ( g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) = g3_lattices(u1_struct_0(B),u2_lattices(B),u1_lattices(B))
           => ! [C] :
                ( m1_subset_1(C,u1_struct_0(A))
               => ! [D] :
                    ( m1_subset_1(D,u1_struct_0(B))
                   => ( C = D
                     => k7_lattices(A,C) = k7_lattices(B,D) ) ) ) ) ) ) ).

fof(t13_filter_2,conjecture,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
         => ( ! [C] :
                ( m1_subset_1(C,u1_struct_0(A))
               => ! [D] :
                    ( m1_subset_1(D,u1_struct_0(A))
                   => ( ( r2_hidden(C,B)
                        & r2_hidden(D,B) )
                    <=> r2_hidden(k4_lattices(A,C,D),B) ) ) )
           => m2_lattice4(B,A) ) ) ) ).

%------------------------------------------------------------------------------